X

Bài tập trắc nghiệm Toán lớp 8

Bài tập ôn tập Chương 3 Hình học 8 có đáp án - Toán lớp 8


Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Với bộ bài tập Bài tập ôn tập Chương 3 Hình học 8 Toán lớp 8 chọn lọc, có đáp án sẽ giúp học sinh hệ thống lại kiến thức bài học và ôn luyện để đạt kết quả cao trong các bài thi môn Toán lớp 8.

Bài tập ôn tập Chương 3 Hình học 8

Bài 1: Cho hình vẽ biết DE // BC. Khẳng định nào sau đây là đúng?

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Lời giải

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Đáp án cần chọn là: A

Bài 2: Chỉ ra câu sai?

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Lời giải

Giả sử ta có: ΔABC = ΔA’B’C’ ⇒ A = A’, B = B’ (cắc cặp góc tương ứng bằng nhau)

⇒ ΔABC ~ ΔA’B’C’ (g - g)

⇒ Đáp án A, B đúng

+ Giả sử xét 2 tam giác ABC và A’B’C’ có: Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Điều kiện trên chưa đủ để chứng minh ΔABC ~ ΔA’B’C’.

⇒ Đáp án C sai.

+ Vì hai tam giác bằng nhau thì có diện tích bằng nhau ⇒ Đáp án D đúng.

Đáp án cần chọn là: C

Bài 3: Chỉ ra 1 tỉ số sai nếu áp dụng định lý Talet, biết ABCD là hình bình hành:

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Lời giải

Có CD // AB (vì ABCD là hình bình hành)

Suy ra: CK // AB; KD // AB; CL // AD

Vì CK // AB nên áp dụng định lý Talet ta có: Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Vì KD // AB nên áp dụng định lý Talet ta có:

Có BC // AD (vì ABCD là hình bình hành)

Suy ra: CL // AD

Vì CL // AD nên áp dụng định lý Talet ta có: Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Vậy Bài tập ôn tập Chương 3 Hình học 8 có đáp án sai

Đáp án cần chọn là: B

Bài 4: Cho hai tam giác MNP và QRS đồng dạng với nhau theo tỉ số k. Tỷ số diện tích của 2 tam giác MNP và QRS là:

A. k

B. 1/k

C. k2

D. 2k

Lời giải

Giả sử ΔMNP ~ ΔQRS theo tỉ số diện tích: Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Đáp án cần chọn là: C

Bài 5: Cho ΔMNP ~ ΔHGK có tỉ số chu vi: Bài tập ôn tập Chương 3 Hình học 8 có đáp án khi đó:

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Lời giải

Gọi k là tỉ số đồng dạng của 2 tam giác MNP và HGK

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Đáp án cần chọn là: A

Bài 6: Cho ΔABC và ΔXYZ đồng dạng. Đỉnh A tương ứng với đỉnh X, đỉnh B tương ứng với đỉnh Y. Biết AB = 3, BC = 4 và XY = 5. Tính YZ?

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Lời giải

Theo bài ra ta có ΔABC ~ ΔXYZ

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Đáp án cần chọn là: D

Bài 7: Cho ΔABC có AB = 4cm, BC = 6cm, AC = 5cm. ΔMNP có MN = 3cm, NP = 2,5cm, PM = 2cm thì tỉ lệ Bài tập ôn tập Chương 3 Hình học 8 có đáp án bằng bao nhiều?

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Lời giải

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Đáp án cần chọn là: B

Bài 8: Cho biết Bài tập ôn tập Chương 3 Hình học 8 có đáp án và đoạn thẳng AB ngắn hơn đoạn thẳng CD là 10cm. Tính độ dài các đoạn thẳng AB, CD?

A. AB = 35cm, CD = 25cm

B. AB = 20cm, CD = 30cm

C. AB = 25cm, CD = 35cm

D. AB = 30cm, CD = 20cm

Lời giải

Theo bài ra, ta có: Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Mà đoạn thẳng AB ngăn shonw đoạn thẳng CD là 10cm, suy ra: CD - AB = 10.

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Đáp án cần chọn là: C

Bài 9: Cho ΔABC, đường phân giác góc B cắt AC tại D và cho biết AB = 10cm, BC = 15cm, AD = 6cm. Tính AC = ?

A. 6cm

B. 9cm

C. 12cm

D. 15cm

Lời giải

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Áp dụng tính chất đường phân giác trong tam giác ABC, ta có:

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Đáp án cần chọn là: D

Bài 10: Cho đoạn AC vuông góc với CE. Nối A với trung điểm D của CE và E với trung điểm B của AC, AD và EB cắt nhau tại F. Cho BC = CD = 15cm. Tính diện tích tam giác DEF theo đơn vị cm2?

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Lời giải

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Xét ΔEAC có AD, EB là 2 đường trung tuyến.

Suy ra F là giao của 2 đường trung tuyến AD, EB nên F là trọng tâm của tam giác ABC.

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Kẻ FH vuông góc với CE (H thuộc CE).

Xét 2 tam giác vuông EFH và EBC ta có: góc BEC chung

⇒ ΔEFH ~ ΔEBC (g - g)

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Vì D là trung điểm của CE nên CD = DE = 15cm.

Vậy diện tích của tam giác DEF là:

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Đáp án cần chọn là: C

Bài 11: Cho tam giác ABC có BC = 8cm; BH và CK (H ∈AC, K ∈ AB) là hai đường trung tuyến kẻ từ B và C. Tính độ dài đoạn HK.

A. HK = 2cm

B. HK = 4cm

C. HK = 6cm

D. HK = 8cm

Lời giải

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Ta lại có BH và CK là hai đường trung tuyến kẻ từ B và C của tam giác ABC, suy ra H và K lần lượt là trung điểm của AC và AB.

Nên HK là đường trung bình của tam giác ABC nên Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Đáp án cần chọn là: B

Bài 12: Một người đo chiều cao của cây nhờ 1 cọc chôn xuống đất, cọc cao 2,45 m và đặt xa cây 1,36m. Sau khi người ấy lùi ra xa cách cọc 0,64m thì người ấy nhìn thấy đầu cọc và đỉnh cây cùng nằm trên một đường thẳng, Hỏi cây cao bao nhiêu? Biết khoảng cách từ chân đến mắt người ấy là 1,65m.

A. 4,51m

B. B. 5,14m

C. C. 5,41m

D. D. 4,15m

Lời giải

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Ta mô tả vị trí cây, cọc và người như hình vẽ bên.

Xét ΔBFE và ΔBNM ta có:

 ● B chung

 ● góc BEF = góc BMN (vì EF // MN, cặp góc đồng vị bằng nhau)

⇒ ΔBFE ~ ΔBNM (g - g)

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

⇔ 1,65(BF + 0,64) = 2,45.BF

⇔ BF = 1,32m

Xét ΔBFE và ΔBCA có:

B chung

góc BEF = góc BAC (vì EF // AC, cặp góc đồng vị bằng nhau)

⇒ ΔBFE ~ ΔBCA (g - g)

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

⇒ CA = 4,15m

Vậy cây cao đúng bằng độ dài của đoạn CA hay cây cao 4,15m.

Đáp án cần chọn là: D

Bài 13: Cho biết ABCD là hình chữ nhật. Tìm x.

A. 7,2

B. 3,6

C. 14,4

D. 1,8

Lời giải

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Xét tam giác BCI và tam giác DEI có:

góc CBI = góc EDI (cặp góc so le trong)

góc EID = góc CIB (2 góc đối đỉnh)

⇒ ΔBCI ~ ΔDEI (g - g)

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Vậy x = 7,2.

Đáp án cần chọn là: A

Bài 14: Tìm y trong hình vẽ dưới đây.

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

A. 17,85

B. B. 10,75

C. C. 18,75

D. D. 15,87

Lời giải

Áp dụng định lí Pytago trong tam giác vuông IAD ta có:

AI2 + AD2 = ID2 ⇔ 42 + 32 = ID2 ⇔ ID2 = 25 ⇒ ID = 5

Xét 2 tam giác vuông IAD và CBI có: góc IDA = góc CIB (gt)

⇒ ΔIAD ~ ΔCBI (g  - g)

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Vậy y = 18,75.

Đáp án cần chọn là: C

Bài 15: Tỉ số các cạnh bé nhất  của 2 tam giác đồng dạng bằng 2/5. Tính chu vi p, p’ của 2 tam giác đó, biết p’ - p = 18?

A. p = 12; p’ = 30

B. p = 30; p’ = 12

C. p = 30; p’ = 48

D. p = 48; p’ = 30

Lời giải

Giả sử 2 tam giác đồng dạng là ABC và DEF, 2 cạnh bé nhất của 2 tam giác lần  lượt là AB và DE.

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Đáp án cần chọn là: A

Bài 16: Cho ΔA’B’C’ ~ ΔABC. Biết SA’B’C’ = Bài tập ôn tập Chương 3 Hình học 8 có đáp ánSABC và hiệu 2 chu vi của 2 tam giác là 16m. Tính chu vi mỗi tam giác?

A. CA’B’C’ = 30m, CABC = 46m

B. CA’B’C’ = 56m, CABC = 40m

C. CA’B’C’ = 24m, CABC = 40m

D. CA’B’C’ = 40m, CABC = 56m

Lời giải

Theo bài ta có: Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Gọi k là tỉ số đồng dạng của 2 tam giác ΔA’B’C’ và ΔABC.

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Ta lại có hiệu 2 chu vi của 2 tam giác là 16m, suy ra: CABC - CA’B’C’ = 16

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Vậy CA’B’C’ = 40m, CABC = 56m

Đáp án cần chọn là: D

Bài 17: Cho ΔA’B’C’ ~ ΔABC có chu vi lần lượt là 50cm và 60cm. Diện tích của ΔABC lớn hơn diện tích của ΔA’B’C’ là 33cm2. Tính diện tích tam giác ABC.

A. 98cm2

B. B. 216cm2

C. C. 59cm2

D. D. 108cm2

Lời giải

Gọi k là tỉ số đồng dạng của 2 tam giác đã cho.

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Đáp án cần chọn là: D

Bài 18: Cho hình bình hành ABCD, điểm F nằm trên cạnh BC. Tia AF cắt BD và DC lần lượt ở E và G. Chọn câu đúng nhất.

A. ΔBFE ~ ΔDEA

B. ΔDEG ~ ΔBAE

C. AE2 = GE.EF

D. Cả A, B, C đều đúng

Lời giải

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

+) Vì ABCD là hình bình hành nên AD // BC ⇒ AD // BF (tính chất hbh)

Xét ΔBEF và ΔDEA có:

góc BEF = góc DEA (hai góc đối đỉnh)

góc FBE = góc ADE (cặp góc so le trong bằng nhau)

⇒ ΔBEF ~ ΔDEA (g - g) nên A sai

+) Vì ABCD là hình bình hành nên AB // DC ⇒ AB // DF

Xét ΔDGE và ΔBAE ta có:

góc DEG = góc BEA (2 góc đối đỉnh)

góc ABE = góc GDE (cặp góc so le trong bằng nhau)

⇒ ΔDGE ~ ΔBAE (g - g) nên B sai

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Đáp án cần chọn là: C

Bài 19: Cho tam giác MNP vuông ở M và có đường cao MK.

A. ΔKNM ~ ΔMNP ~ ΔKMP

B. MK2 = NK.PK

C. Cả A, B đều sai

D. Cả A, B đều đúng

Lời giải

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

+) Xét 2 tam giác vuông ΔKNM và ΔMNP có: N chung

Nên ΔKNM ~ ΔMNP (g.g) (1)

Xét 2 tam giác vuông KMP và MNP có: P chung

Nên ΔKMP ~ ΔMNP (gg) (2)

Từ (1) và (2) suy ra: ΔKNM ~ ΔKMP (theo t/c bắc cầu).

Vậy ΔKNM ~ ΔMNP ~ ΔKMP nên A đúng.

+) Theo chứng minh trên: ΔKNM ~ ΔKMP  ⇒ Bài tập ôn tập Chương 3 Hình học 8 có đáp án

⇔ MK2 = NK.PK nên B đúng

Vậy cả A, B đều đúng.

Đáp án cần chọn là: D

Bài 20: Cho hình chữ nhật ABCD có E là trung điểm của AB. Tia DE cắt AC ở F, cắt CB ở G. Chọn câu đúng.

A. FD2 = FE.FG

B. 2FD = FE.FG

C. FD.FE = FG2

D. Cả A, B, C đều sai

Lời giải

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Ta có AB // CD (vì ABCD là hình chữ nhật)

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Xét 2 tam giác vuông ΔAED và ΔBEG ta có:

góc DAE = góc GBE = 900

AE = EB (gt)

góc AED = góc BEG (2 góc đối đỉnh bằng nhau)

⇒ ΔAED = ΔBEG (g - c - g)

⇒ ED = EG (các cạnh tương ứng)

Ta thấy:

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Đáp án cần chọn là: A

Bài 21: Cho ΔABC vuông tại A, đường cao AH. Gọi I và K lần lượt là hình chiếu của H lên AB và AC. Tam giác AIK đồng dạng với tam giác nào dưới đây?

A. ACB

B. ABC

C. CAB

D. BAC

Lời giải

Bài tập ôn tập Chương 3 Hình học 8 có đáp án

Gọi I, K lần lượt là hình chiếu của H lên AB và AC.

⇒ góc HIA = góc HKA = 900

Xét tứ giác AIHK có: góc IAK = góc HIA = góc HKA = 900

⇒ Tứ giác AIHK là hình chữ nhật (dhnb)

+) Xét ΔAIK và ΔIAH ta có:

 ● AI chung

 ● AK = IH (theo tính chất của hình chữ nhật)

 ● AH = IK (theo tính chất của hình chữ nhật)

⇒ ΔAIK = ΔIAH (c - c - c) (1)

Xét 2 tam giác vuông ΔIAH và ΔHAB có: A chung

⇒ ΔIAH ~ ΔHAB (g - g) (2)

Xét 2 tam giác vuông ΔHAB và ΔACB có: B chung

⇒ ΔHAB ~ ΔACB (g - g) (3)

Từ (1), (2) và (3) ta có: ΔAIK ~ ΔACB

Đáp án cần chọn là: A

Xem thêm bộ bài tập trắc nghiệm Toán lớp 8 chọn lọc, có đáp án hay khác: