Trắc nghiệm Những hằng đẳng thức đáng nhớ (phần 2) có đáp án - Toán lớp 8
Trắc nghiệm Những hằng đẳng thức đáng nhớ (phần 2) có đáp án
Với bộ bài tập Trắc nghiệm Những hằng đẳng thức đáng nhớ (phần 2) Toán lớp 8 chọn lọc, có đáp án sẽ giúp học sinh hệ thống lại kiến thức bài học và ôn luyện để đạt kết quả cao trong các bài thi môn Toán lớp 8.
Bài 1: Chọn câu đúng.
A. (A + B)3 = A3 + 3A2B + 3AB2 + B3
B. (A - B)3 = A3 - 3A2B - 3AB2 - B3
C. (A + B)3 = A3 + B3
D. (A - B)3 = A3 - B3
Lời giải
Ta có (A + B)3 = A3 + 3A2B + 3AB2 + B3 nên phương án C sai, A đúng.
(A - B)3 = A3 - 3A2B + 3AB2 - B3 nên phương án B sai, D sai.
Đáp án cần chọn là: A
Bài 2: Chọn câu đúng. (x – 2y)3 bằng
A. x3 – 3xy + 3x2y + y3
B. x3 – 6x2y + 12xy2 – 8y3
C. x3 – 6x2y + 12xy2 – 4y3
D. x3 – 3x2y + 12xy2 – 8y3
Lời giải
Ta có (x – 2y)3 = x3 – 3.x2.2y + 3x.(2y)2 – (2y)3 = x3 – 6x2y + 12xy2 – 8y3
Đáp án cần chọn là: B
Bài 3: Chọn câu sai.
A. A3 + B3 = (A + B)(A2 – AB + B2)
B. A3 - B3 = (A - B)(A2 + AB + B2)
C. (A + B)3 = (B + A)3
D. (A – B)3 = (B – A)3
Lời giải
Ta có A3 + B3 = (A + B)(A2 – AB + B2) và A3 - B3 = (A - B)(A2 + AB + B2) nên A, B đúng.
Vì A + B = B + A ⇒ (A + B)3 = (B + A)3 nên C đúng
Vì A – B = - (B – A) ⇒ (A – B)3 = -(B – A)3 nên D sai
Đáp án cần chọn là: D
Bài 4: Chọn câu đúng.
A. 8 + 12y + 6y2 + y3 = (8 + y3)
B. a3 + 3a2 + 3a + 1 = (a + 1)3
C. (2x – y)3 = 2x3 – 6x2y + 6xy – y3
D. (3a + 1)3 = 3a3 + 9a2 + 3a + 1
Lời giải
Ta có 8 + 12y + 6y2 + y3 = 23 + 3.22y + 3.2.y2 + y3 = (2 + y)3 ≠ (8 + y3) nên A sai
+ Xét (2x – y)3 = (2x3 – 3(2x)2.y + 3.2x.y2 – y3
= 8x3 – 12x2y + 6xy – y3 ≠ 2x3 – 6x2y + 6xy – y3 nên C sai
+ Xét (3a + 1)3 = (3a)3 + 3.(3a)2.1 + 3.3a.12 + 1
= 27a3 + 27a2 + 9a + 1 ≠ 3a3 + 9a2 + 3a + 1 nên D sai
+ Xét a3 + 3a2 + 3a + 1 = (a + 1)3 nên B đúng
Đáp án cần chọn là: B
Bài 5: Chọn câu sai.
A. (-b – a)3 = -a3 – 3ab(a + b) – b3
B. (c – d)3 = c3 – d3 + 3cd(d – c)
C. (y – 2)3 = y3 – 8 – 6y(y + 2)
D. (y – 1)3 = y3 – 1- 3y(y – 1)
Lời giải
Ta có (-b – a)3 = [-(a + b)3] = -(a + b)3
= -(a3 + 3a2b + 3ab2 + b3)
= -a3 - 3a2b - 3ab2 - b3
= -a3 – 3ab(a + b) – b3 nên A đúng
+ Xét (c – d)3 = c3 – 3c2d + 3cd2 + d3 = c3 – d3 + 3cd(d – c) nên B đúng
+ Xét (y – 1)3 = y3 – 3y2.1 + 3y.12 – 13 = y3 – 1 – 3y(y – 1) nên D đúng
+ Xét (y – 2)3 = y3 – 3y2.2 +3y.22 – 23 = y3 – 6y2 + 12y – 8
= y3 – 8 – 6y(y – 2) ≠ y3 – 8 – 6y(y + 2) nên C sai
Đáp án cần chọn là: C
Bài 6: Viết biểu thức x3 + 12x2 + 48x + 64 dưới dạng lập phương của một tổng
A. (x + 4)3
B. (x – 4)3
C. (x – 8)3
D. (x + 8)3
Lời giải
Ta có x3 + 12x2 + 48x + 64 = x3 + 3x2.4 + 3.x.42 + 43 = (x + 4)3
Đáp án cần chọn là: A
Bài 7: Viết biểu thức 8x3 + 36x2 + 54x + 27 dưới dạng lập phương của một tổng
A. (2x + 9)3
B. (2x + 3)3
C. (4x + 3)3
D. (4x + 9)3
Lời giải
Ta có 8x3 + 36x2 + 54x + 27 = (2x)3 + 3(2x)2.3 + 3.2x.32 + 33 = (2x + 3)3
Đáp án cần chọn là: B
Bài 8: Viết biểu thức x3 – 6x2 + 12x – 8 dưới dạng lập phương của một hiệu
A. (x + 4)3
B. (x – 4)3
C. (x + 2)3
D. (x - 8)3
Lời giải
Ta có x3 – 6x2 + 12x – 8 = x3 – 3.x2.2 + 3.x.22 – 23 = (x – 2)3
Đáp án cần chọn là: D
Bài 9: Viết biểu thức 8x3 – 12x2y + 6xy2 – y3 dưới dạng lập phương của một hiệu
A. (2x – y)3
B. (x – 2y)3
C. (4x – y)3
D. (2x + y)3
Lời giải
Ta có 8x3 – 12x2y + 6xy2 – y3 = (2x)3 – 3.(2x)2y + 3.2x.y2 – y3 = (2x – y)3
Đáp án cần chọn là: A
Bài 10: Viết biểu thức (x – 3y)(x2 + 3xy + 9y2) dưới dạng hiệu hai lập phương
A. x3 + (3y)3
B. x3 + (9y)3
C. x3 – (3y)3
D. x3 – (9y)3
Lời giải
Ta có (x – 3y)(x2 + 3xy + 9y2) = (x – 3y)(x + x.3y + (3y)2 = x3 – (3y)3
Đáp án cần chọn là: C
Bài 11: Viết biểu thức (3x – 4)(9x2 + 12x + 16) dưới dạng hiệu hai lập phương
A. (3x)3 – 163
B. 9x3 – 64
C. 3x3 – 43
D. (3x)3 – 43
Lời giải
Ta có (3x – 4)(9x2 + 12x + 16) = (3x – 4)((3x)2 + 3x.4 + 42) = (3x)3 – 43
Đáp án cần chọn là: D
Bài 12: Viết biểu thức (x2 + 3)(x4 – 3x2 + 9) dưới dạng tổng hai lập phương
A. (x2)3 + 33
B. (x2)3 – 33
C. (x2)3 + 93
D. (x2)3 – 93
Lời giải
Ta có (x2 + 3)(x4 – 3x2 + 9) = (x2 + 3)((x2)2 – 3.x2 + 32) = (x2)3 + 33
Đáp án cần chọn là: A
Bài 13: Viết biểu thức dưới dạng tổng hai lập phương
Lời giải
Ta có:
Đáp án cần chọn là: B
Bài 14: Tìm x biết x3 + 3x2 + 3x + 1 = 0
A. x = -1
B. x = 1
C. x = -2
D. x = 0
Lời giải
Ta có x3 + 3x2 + 3x + 1 = 0 ⇔ (x + 1)3 = 0
⇔ x + 1 = 0 ⇔ x = -1
Vậy x = -1
Đáp án cần chọn là: A
Bài 15: Tìm x biết x3 – 12x2 + 48x – 64 = 0
A. x = -4
B. x = 4
C. x = -8
D. x = 8
Lời giải
Ta có x3 – 12x2 + 48x – 64 = 0
⇔ x3 – 3.x2.4 + 3.x.42 – 43 = 0
⇔ (x – 4)3 = 0 ⇔ x – 4 = 0 ⇔ x = 4
Vậy x = 4
Đáp án cần chọn là: B
Bài 16: Cho x thỏa mãn (x + 2)(x2 – 2x + 4) – x(x2 – 2) = 14. Chọn câu đúng.
A. x = -3
B. x = 11
C. x = 3
D. x = 4
Lời giải
Ta có (x + 2) (x2 – 2x + 4) – x(x2 – 2) = 14
⇔ x3 + 23 – (x3 – 2x) = 14
⇔ x3 + 8 – x3 + 2x = 14
⇔ 2x = 6 ⇔ x = 3
Vậy x = 3
Đáp án cần chọn là: C
Bài 17: Cho x thỏa mãn (x + 1)3 – x2(x + 3) = 2. Chọn câu đúng.
Lời giải
Ta có:
Đáp án cần chọn là: D
Bài 18: Cho biểu thức A = x3 – 3x2 + 3x. Tính giá trị của A khi x = 1001
A. A = 10003
B. A = 1001
C. A = 10003 – 1
D. A = 10003 + 1
Lời giải
Ta có A = x3 – 3x2 + 3x = x3 – 3x2 + 3x – 1 + 1 = (x – 1)3 + 1
Thay x = 1001 vào A = (x – 1)3 + 1 ta được
A = (1001 – 1)3 + 1 suy ra A = 10003 + 1
Đáp án cần chọn là: D
Bài 19: Cho biểu thức B = x3 – 6x2 + 12x + 10. Tính giá trị của B khi x = 1002
A. B = 10003 + 18
B. B = 10003
C. B = 10003 – 2
D. B = 10003 + 2
Lời giải
Ta có B = x3 – 6x2 + 12x + 10
= x3 – 3x2.2 + 3x.22 – 8 + 18 = (x – 2)3 + 18
Thay x = 1002 vào B = (x – 2)3 + 18 ta được
B = (1002 – 2)3 + 18 = 10003 + 18
Đáp án cần chọn là: A
Bài 20: Rút gọn biểu thức M = (2x + 3)(4x2 – 6x + 9) – 4(2x3 – 3) ta được giá trị của M là
A. Một số lẻ
B. Một số chẵn
C. Một số chính phương
D. Một số chia hết cho 5
Lời giải
Ta có M = (2x + 3)(4x2 – 6x + 9) – 4(2x3 – 3)
= (2x + 3)[(2x)2 – 2x.3 + 32] – 8x3 + 12
= (2x)3 = 32 – 8x3 + 12 = 8x3 + 27 – 8x3 + 12 = 39
Vậy giá trị của M là một số lẻ
Đáp án cần chọn là: A
Bài 21: Rút gọn biểu thức H = (x + 5)(x2 – 5x + 25) – (2x + 1)3 + 7(x – 1)3 – 3x(-11x + 5) ta được giá trị của H là
A. Một số lẻ
B. Một số chẵn
C. Một số chính phương
D. Một số chia hết cho 12
Lời giải
Ta có H = (x + 5)(x2 – 5x + 25) – (2x + 1)3 + 7(x – 1)3 – 3x(-11x + 5)
= x3 + 53 – (8x3 + 3.(2x)2.1 + 3.2x.12 + 1) + 7(x3 – 3x2 + 3x – 1) + 33x2 – 15x
= x3 + 125 – 8x3 – 12x2 – 6x – 1 + 7x3 – 21x2 + 21x – 7 + 33x2 – 15x
= (x3 – 8x3 + 7x3) + (-12x2 – 21x2 + 33x2) + (-6x + 21x – 15x) + 125 – 1 – 7
= 117
Vậy giá trị của M là một số lẻ
Đáp án cần chọn là: A
Bài 22: Giá trị của biểu thức P = -2(x3 + y3) + 3(x2 + y2) khi x + y = 1 là
A. P = 3
B. P = 1
C. P = 5
D. P = 0
Lời giải
Ta có (x + y)3 = x3 + 3x2y + 3xy2 + y3
⇔ x3 + y3 = (x + y)3 – (3x2y + 3xy2)
= (x + y)3 – 3xy(x + y)
Và (x + y)2 = x2 + 2xy + y2 ⇔ x2 + y2 = (x + y)2 – 2xy
Khi đó P = -2(x3 + y3) + 3(x2 + y2)
= -2[(x + y)3 – 3xy(x + y)] + 3[(x + y)2 – 2xy]
Vì x + y = 1 nên ta có
P = -2(1 – 3xy) + 3(1 – 2xy)
= -2 + 6xy + 3 – 6xy = 1
Vậy P = 1
Đáp án cần chọn là: B
Bài 23: Giá trị của biểu thức Q = a3 + b3 biết a + b = 5 và ab = -3
A. Q = 170
B. Q = 140
C. Q = 80
D. Q = -170
Lời giải
Ta có (a + b)3 = a3 + 3a2b + 3ab2 + b3 = a3 + b3 + 3ab(a + b)
Suy ra a3 + b3 = (a + b)3 – 3ab(a + b)
Hay Q = (a + b)3 – 3ab(a + b)
Thay a + b = 5 và a.b = -3 vào Q = (a + b)3 – 3ab(a + b) ta được
Q = 53 – 3.(-3).5 = 170
Vậy Q = 170
Đáp án cần chọn là: A
Bài 24: Cho P = (4x + 1)3 – (4x + 3)(16x2 + 3) và Q = (x – 2)3 – x(x + 1)(x – 1) + 6x(x – 3) + 5x.
Chọn câu đúng.
A. P = Q
B. P < Q
C. P > Q
D. P = 2Q
Lời giải
Ta có
P = (4x + 1)3 – (4x + 3)(16x2 + 3)
= (4x)3 + 3.(4x)2.1 + 3.4x.12 + 13 – (64x3 + 12x + 48x2 + 9)
= 64x3 + 48x2 + 12x + 1 – 64x3 – 12x – 48x2 – 9 = -8
Nên P = -8
Q = (x – 2)3 – x(x + 1)(x – 1) + 6x(x – 3) + 5x
= x3 – 3.x2.2 + 3x.22 – 23 – x(x2 – 1) + 6x2 – 18x + 5x
= x3 – 6x2 + 12x – 8 – x3 + x + 6x2 – 18x + 5x = -8
⇒ Q = -8
Vậy P = Q
Đáp án cần chọn là: A
Bài 25: Cho M = 8(x – 1)(x2 + x + 1) – (2x – 1)(4x2 + 2x + 1) và N = x(x + 2)(x – 2) – (x + 3)(x2 – 3x + 9) – 4x.
Chọn câu đúng
A. M = N
B. N = M + 2
C. M = N – 20
D. M = N + 20
Lời giải
Ta có
M = 8(x – 1)(x2 + x + 1) – (2x – 1)(4x2 + 2x + 1)
= 8(x3 – 1) – ((2x)3 – 1)
= 8x3 – 8 – 8x3 + 1 = -7 nên M = -7
N = x(x + 2)(x – 2) – (x + 3)(x2 – 3x + 9) – 4x
= x(x2 – 4) – (x3 + 33) + 4x
= x3 – 4x – x3 – 27 + 4x = -27
⇒ N = -27
Vậy M = N + 20
Đáp án cần chọn là: D
Bài 26: Giá trị của biểu thức E = (x + 1)(x2 – x + 1) – (x – 1)(x2 + x + 1) là
A. 2
B. 3
C. 1
D. 4
Lời giải
Ta có E = (x + 1)(x2 – x + 1) – (x – 1)(x2 + x + 1)
= x3 + 1 – (x3 – 1) = x3 + 1 – x3 + 1 = 2
Vậy E = 2
Đáp án cần chọn là: A
Bài 27: Giá trị của biểu thức A = (x2 – 3x + 9)(x + 3) – (54 + x3)
A. 54
B. -27
C. -54
D. 27
Lời giải
Ta có A = (x2 – 3x + 9)(x + 3) – (54 + x3)
A = (x2 – 3x + 32)(x + 3) – (54 + x3)
A = x3 + 33 – 54 – x3
A = 27 – 54 = -27
Vậy A = -27
Đáp án cần chọn là: B
Bài 28: Cho a + b + c = 0. Giá trị của biểu thức B = a3 + b3 + c3 – 3abc bằng
A. B = 0
B. B =1
C. B = 2
D. B = 3
Lời giải
Ta có (a + b)3 = a3 + 3a2b + 3ab2 + b3 = a3 + b3 + 3ab(a + b)
⇒ a3 + b3 = (a + b)3 – 3ab(a + b)
Từ đó B = a3 + b3 + c3 – 3abc
= (a + b)3 – 3ab(a + b) + c3 – 3abc
= [(a+b)3 + c3] – 3ab(a + b +c)
= (a + b + c)[(a + b)2 – (a + b)c + c2] – 3ab(a + b + c)
Mà a + b + c = 0 nên
B = 0.[(a + b)2 – (a + b)c + c2] – 3ab.0 = 0
Vậy B = 0
Đáp án cần chọn là: A
Bài 29: Cho 2x – y = 9. Giá trị của biểu thức A = 8x3 – 12x2y + 6xy2 – y3 + 12x2 – 12xy + 3y2 + 6x – 3y + 11 bằng
A. A = 1001
B. A = 1000
C. A = 1010
D. A = 990
Lời giải
Ta có A = 8x3 – 12x2y + 6xy2 – y3 + 12x2 – 12xy + 3y2 + 6x – 3y + 11
= (2x)3 – 3.(2x)2.y + 3.2x.y + y3 + 3(4x2 – 4xy + y2) + 3(2x – y) + 11
= (2x – y)3 + 3(2x – y)2 + 3(2x – y) + 1 + 10
= (2x – y + 1)3 + 10
Thay 2x – y = 9 vào A = (2x – y + 1)3 + 10 ta được A = (9 + 1)3 + 10 = 1010
Vậy A = 1010
Đáp án cần chọn là: C
Bài 30: Cho A = 13+ 23 + 33 + 43 + … + 103. Khi đó
A. A chia hết cho 11
B. A chia hết cho 5
C. Cả A, B đều đúng
D. Cả A, B đều sai
Lời giải
Ta có A = 13+ 23 + 33 + 43 + 53 + 63 + 73 + 83 + 93 + 103
= (13 + 103) + (23 + 93) + (33 + 83) + (43 + 73) + (53 + 63)
= 11(12 – 10 + 102) + 11(22 – 2.9 + 92) + … + 11(52 – 5.6 + 62)
Vì mỗi số hạng trong tổng đều chia hết cho 11 nên A ⁝ 11.
Lại có A = 13+ 23 + 33 + 43 + 53 + 63 + 73 + 83 + 93 + 103
= (13 + 93) + (23 + 83) + (33 + 73) + (43 + 63) + (53 + 103)
= 10(12 – 9 + 92) + 10(22 – 2.8 + 82) + … + 53 + 103
Vì mỗi số hạng trong tổng đều chia hết cho 5 nên A ⁝ 5.
Vậy A chia hết cho cả 5 và 11
Đáp án cần chọn là: C
Bài 31: Cho a, b, c là các số thỏa mãn điều kiện a = b + c. Khi đó
Lời giải
Ta có a3 + b3 = (a + b)(a2 – ab + b2) mà a = b + c nên
a3 + b3 = (a + b)(a2 – ab + b2)
= (a + b)[(b + c)2 – (b + c)b + b2]
= (a + b)(b2 + 2bc + c2 – b2 – bc + b2)
= (a + b)(b2 + bc + c2)
Tương tự ta có
a3 + c3 = (a + c)(a2 – ac + c2)
= (a + c)[(b + c)2 – (b + c)c + c2]
= (a + c)(b2 + 2bc + c2 – c2 – bc + c2)
= (a + c)(b2 + bc + c2)
Từ đó ta có
Đáp án cần chọn là: A
Bài 32: Cho (a + b + c)2 + 12 = 4(a + b + c) + 2(ab + bc + ca). Khi đó
A. a = b = 2c
B. a = b = c
C. a = 2b = c
D. a = b = c = 2
Lời giải
Ta có (a + b + c)2 + 12 = 4(a + b + c) + 2(ab + bc + ca)
⇔ a2 + b2 + c2 + 2(ab + bc + ca) + 12 = 4(a + b + c) + 2(ab + ac + bc)
⇔ a2 + b2 + c2 – 4a – 4b – 4c + 12 = 0
⇔ (a2 – 4a + 4) + (b2 – 4b + 4) + (c2 – 4c + 4) = 0
⇔ (a – 2)2 + (b – 2)2 + (c – 2)2 = 0
Mà (a – 2)2 ≥ 0; (b – 2)2 ≥ 0; (c – 2)2 ≥ 0 với mọi a, b, c
Dấu “=” xảy ra
Đáp án cần chọn là: D