X

Chuyên đề Toán lớp 9

Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay - Toán lớp 9


Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay

Với Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay Toán lớp 9 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ từ đó đạt điểm cao trong bài thi môn Toán lớp 9.

Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay

Phương pháp giải

Bước 1: Tìm đkxđ.

Bước 2: Đặt một (hoặc nhiều) biểu thức thích hợp làm ẩn mới, (thường là các biểu thức chứa căn thức) tìm điều kiện của ẩn mới.

Bước 3: Biến đổi phương trình theo ẩn mới (Có thể biến đổi hoàn toàn thành ẩn mới hoặc để cả 2 ẩn cũ và mới) rồi giải phương trình theo ẩn mới.

Bước 4: Thay trả lại ẩn cũ và tìm nghiệm, đối chiếu đkxđ và kết luận.

Ví dụ minh họa

Ví dụ 1: Giải phương trình Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

Hướng dẫn giải:

Đkxđ: ∀ x ∈ R.

Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

Phương trình trở thành:

t2 + t – 42 = 0 ⇔ (t – 6)(t + 7) = 0 Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

Với t = 6 ⇒ Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

⇔ 2x2 + 3x + 9 = 36

⇔ 2x2 + 3x - 27 = 0

⇔ (x-3) (2x+9) = 0 .

⇔ x = 3 hoặc x = -9/2

Vậy phương trình có hai nghiệm x = 3 và x = -9/2.

Ví dụ 2: Giải phương trình Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

Hướng dẫn giải:

Đkxđ : 4x2 + 5x + 1 ≥ 0

Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

Phương trình trở thành : a - b = a2 - b2

⇔ (a-b)(a+b-1) = 0 ⇔ a - b = 0 hoặc a + b - 1 = 0.

TH1 : a – b = 0 ⇔ 9x – 3 = 0 ⇔ x = 1/3 (t.m đkxđ).

Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

⇒ Phương trình (*) vô nghiệm.

Vậy phương trình có nghiệm duy nhất x = 1/3 .

Ví dụ 3: Giải phương trình: Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

Hướng dẫn giải:

Đkxđ: ∀ x ∈ R.

Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

Phương trình trở thành: t2 - (x+3)t + 3x = 0

⇔ (t-3)(t-x) = 0 ⇔ t = 3 hoặc t = x .

+ t = 3 ⇒ Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết ⇔ x2 = 8 ⇔ x = ±2√2 .

+ t = x ⇒ Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết ⇒ x2 + 1 = x2. Phương trình vô nghiệm.

Vậy phương trình có hai nghiệm .

Hay lắm đó

Bài tập trắc nghiệm tự luyện

Bài 1: Cho phương trình: Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết Nếu đặt Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết thì t phải lưu ý điều kiện nào?

A. t ∈ R    B. t ≤ 1

C. t ≥ 1    D. t ≥ -1 .

Lời giải:

Đáp án: D

Bài 2: Số nghiệm của phương trình Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết là:

A. 0    B. 2    C. 4    D. 6

Lời giải:

Đáp án: B

Bài 3: Tập nghiệm của phương trình Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết có bao nhiêu phần tử?

A. 0    B. 2    C. 4    D. 6

Lời giải:

Đáp án: B

Bài 4: Cho phương trình Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết Khẳng định nào dưới đây đúng?

A. Phương trình có nghiệm âm duy nhất.

B. Phương trình có 2 nghiệm trái dấu.

C. Phương trình có 2 nghiệm âm.

D. Phương trình có hai nghiệm dương.

Lời giải:

Đáp án: D

Bài 5: Phương trình Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết có tổng các nghiệm bằng:

A. 3/2    B. 1    C. 2/3    D. -3/2 .

Lời giải:

Đáp án: C

Bài 6: Giải phương trình Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

Hướng dẫn giải:

Ta có:

Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

Phương trình trở thành: t + t3 - 30 = 0 ⇔ (t-3)(t2 + 3t + 10) = 0 ⇔ t = 3

Thay trả lại biến x ta được: Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

⇔ x2 - 4x + 31 = 27

⇔ x2 - 4x + 4 = 0

⇔ (x-2)2 = 0

⇔ x = 2.

Vậy phương trình có nghiệm x = 2.

Bài 7: Giải phương trình :

Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

Hướng dẫn giải:

a) Đkxđ: Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

Phương trình trở thành:

Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

Vậy phương trình có nghiệm x = 1.

b) Đkxđ: x - 1/x ≥ 0 ; x ≠ 0 .

Chia cả hai vế của phương trình cho x ta được:

Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

Pt trở thành: t2 + 2t - 3 = 0 ⇔ (t + 3)(t – 1) = 0 ⇔ t = -3(L) hoặc t = 1 (t/m) .

+ t = 1 Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

Vậy phương trình có hai nghiệm Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

c) Đkxđ: x ≥ -1 .

Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

Phương trình trở thành : 2a2 - 5ab + 2b2 = 0

⇔ (2a-b) (a-2b) = 0

⇔ a = b/2 hoặc a = 2b

+ a = b/2 ⇔ Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

⇔ x2 - x + 1 = 4(x+1) ⇔ x2 - 5x - 3 = 0 ⇔ Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

+ a = 2b ⇔ Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

⇔ x+1 = 4(x2 - x + 1)⇔ 4x2 -5x + 3 = 0

Phương trình vô nghiệm.

Vậy phương trình có hai nghiệm Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết .

Hay lắm đó

Bài 8: Giải phương trình:

Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

Hướng dẫn giải:

a) Đkxđ: x2 ≤ 15.

Đặt Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

⇒ a2 - b2 = (25 - x2) - (15 - x2) = 10

Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

Thay trả lại biến x ta được: Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

Vậy phương trình có hai nghiệm Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

b) Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

Đkxđ: x ≥ 1.

Đặt Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

⇒ u3 + v2 = 2 - x + x - 1 = 1(*)

Mà theo đề bài ta có u + v = 1 ⇒ v = 1 – u

Thay v = 1 – u vào (*) ta được: u3 + (1 – u)2 = 1

⇔ u3 + u2 – 2u + 1 = 1

⇔ u3 + u2 – 2u = 0

⇔ u(u2 + u – 2) = 0

⇔ u(u – 1)(u + 2) = 0

⇔ u = 0 hoặc u = 1 hoặc u = -2.

+ u = 0 ⇒ x = 2 (t.m)

+ u = 1 ⇒ x = 1 (t.m)

+ u = -2 ⇒ x = 10 (t.m)

Vậy phương trình có ba nghiệm x = 1; x = 2 và x = 10.

c) Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

Đkxđ: ∀x ∈ R.

Đặt Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

⇒ a3 - b3 = 2

⇒ (a – b)(a2 + b2 + ab) = 2 (*)

Phương trình trở thành: a2 + b2 + ab = 1 (**)

Thay vào (*) ta được: (a – b).1 = 2 ⇒ a – b = 2 ⇒ a = 2 + b

Thay a = 2 + b vào (**) ta được:

⇔ 3b2 + 6b + 3 = 0

⇔ 3(b + 1)2 = 0

⇔ b = -1

Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết ⇔ x = 0.

Thử lại x = 0 là nghiệm của phương trình.

Vậy phương trình có nghiệm x = 0.

Bài 9: Giải phương trình: Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

Hướng dẫn giải:

Đkxđ: x ≥ 1 .

Đặt Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

Khi đó Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

Phương trình trở thành:

a + b = 1 + ab ⇔ ab + 1 – a – b = 0 ⇔ (a – 1)(b – 1) = 0 ⇔ a = 1 hoặc b = 1

+ a = 1 ⇔ √(x-1) = 1 ⇔ x = 2.

+ b = 1 ⇔ Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

⇔ x3 + x2 + x = 0

⇔ x(x2 + x + 1) = 0

⇔ x = 0 (không t.m đkxđ).

Vậy phương trình có nghiệm x = 2.

Bài 10: Giải phương trình: Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

Hướng dẫn giải:

Đkxđ: -18/5 ≤ x > 64/5 .

Đặt Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

⇒ a4 + b4 = 18 - 5x + 64 + 5x = 82(*)

Phương trình trở thành: a + b = 4 (**)

⇒ a2 + b2 = (a+b)2 - 2ab = 16 - 2ab

⇒ a4 + b4 = (a2 + b2)2 - 2a2b2 = (16-2ab)2 - 2a2b2= 2a2b2 - 64ab + 256

Hay 2a2b2 - 64ab + 256 = 82

⇔ a2b2 - 64ab + 256 = 82

⇔ 2a2b2 - 32ab + 87 = 0

⇔ (ab – 3)(ab – 29) = 0

⇔ ab = 3 hoặc ab = 29.

+ ab = 3.

Từ (**) ⇒ a = 4 – b.

Thay vào ab = 3 ⇒ (4 – b)b = 3 ⇔ b2 – 4b + 3 = 0 ⇔ (b – 1)(b – 3) = 0 ⇔ Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

Nếu a = 3; b = 1 ⇒ ⇒ x = Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

Nếu a = 1; b = 3 ⇒ ⇒ x = Cách giải phương trình vô tỉ bằng phương pháp đặt ẩn phụ cực hay | Bài tập Toán 9 chọn lọc có giải chi tiết

Thử lại cả hai đều là nghiệm của phương trình.

+ Nếu ab = 29

Từ (**)⇒ a = 4 – b.

Thay vào ab = 29 ⇒ (4 – b)b= 29 ⇔ b2 – 4b + 29 = 0.

Phương trình vô nghiệm.

Vậy phương trình có hai nghiệm x = 63/5 và x = -17/5

Xem thêm các dạng bài tập Toán lớp 9 chọn lọc, có lời giải hay khác: