Chuyên đề Góc với đường tròn - Toán lớp 9
Chuyên đề Góc với đường tròn
Với Chuyên đề Góc với đường tròn Toán lớp 9 tổng hợp các dạng bài tập, bài tập trắc nghiệm có lời giải chi tiết với đầy đủ phương pháp giải, ví dụ minh họa sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Góc với đường tròn từ đó đạt điểm cao trong bài thi môn Toán lớp 9.
- Góc ở tâm. Số đo cung liên hệ giữa cung và dây
- Góc nội tiếp
- Góc tạo bởi tia tiếp tuyến và dây cung
- Góc có đỉnh bên trong, góc có đỉnh bên ngoài đường tròn
- Cung chứa góc
- Tứ giác nội tiếp
- Đường tròn ngoại tiếp - Đường tròn nội tiếp
- Độ dài đường tròn
- Diện tích hình tròn
- Bài tập trắc nghiệm Góc với đường tròn
- Ôn tập chương 3
Góc ở tâm. Số đo cung liên hệ giữa cung và dây
A. Phương pháp giải
1. Định nghĩa
- Góc có đỉnh trùng với tâm đường tròn gọi là góc ở tâm.
- Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó.
- Số đo của cung lớn bằng trừ đi số đo của cung nhỏ.
- Số đo của nửa đường tròn bằng.
2. Trong một đường tròn hay trong hai đường tròn bằng nhau:
- Hai cung bằng nhau căng hai dây bằng nhau.
- Hai dây bằng nhau căng hai cung bằng nhau.
3. Nếu C là một điểm nằm trên cung AB thì:
Sđ AB = Sđ AC + Sđ CB
4. Với hai cung nhỏ trong một đường tròn hay trong hai đường tròn bằng nhau:
- Hai cung bằng nhau căng hai dây bằng nhau.
- Hai dây bằng nhau căng hai cung bằng nhau.
5. Với hai cung nhỏ trong một đường tròn hay trong hai đường tròn bằng nhau:
- Cung lớn hơn căng dây lớn hơn.
- Dây lớn hơn căng cung lớn hơn.
B. Bài tập tự luận
Bài 1: Cho đường tròn (O, R) và điểm M nằm ngoài đường tròn đó. Gọi MA, MB là hai tiếp tuyến với đường tròn tại A và B. Tính số đo của góc ở tâm tạo bởi hai bán kính OA và OB nếu:
a) ∠AMB = 70o
b) MA = R
c) MO = 2R
Hướng dẫn giải
Vì MA và MB là các tiếp tuyến của đường tròn (O) tại A và B nên: MA ⊥ OA, MB ⊥ OB
Suy ra: ∠MAO = ∠MBO = 90o
a)
Xét tứ giác MAOB có:
∠AMB + ∠AOB + ∠MAO + ∠MBO = 360o
⇔ ∠AOB = 360o - (∠AMB + ∠MAO + ∠MBO)
= 360o - (70o+ 90o + 90o)
= 110o
Vậy số đo góc ở tâm tạo bởi hai bán kính OA, OB bằng 110o .
b)
Nếu MA = R
Xét ΔMAO có: MA = AO = R và ∠MAO = 90o
=> Δ MAO vuông cân tại A
=> ang;MOA = 45o
Vậy ∠AOB = 2.∠MOA = 90o
c)
Nếu MO = 2R
Xét ΔMAO vuông tại A có: MO = 2.AO
=> ∠AMO = 30o => ∠AOM = 60o
Vậy: ∠AOB = 2.∠AOM = 120o
Bài 2: Cho đường tròn (O; R) và dây AB không đi qua O. Trên dây AB lấy các điểm M, N sao cho AM = MN = NB. Tia OM, ON cắt (O) lần lượt tại C và D.
Hướng dẫn giải
Thât vậy, xét ΔAOM và ΔBON có:
OA = OB = R
∠OAM = ∠OBN (do ΔOAB cân tại O)
AM = BN (gt)
Suy ra ΔAOM = ΔBON(c-g-c)
Suy ra ∠AOM = ∠BON (hai góc tương ứng)
Gọi I là trung điểm của OB. Suy ra NI là đường trung bình của ΔOBM nên NI // OM => ∠MON = ∠ONI(so le trong) (1)
Mặt khác ta có: OB = OC = R, mà M ∈ OC => OM < OB hay NI < OI.
Xét ΔONI có NI < OI nên: ∠NOI < ∠ONI (2)
Từ (1) và (2) suy ra ∠NOI < ∠MON
Bài 3: Cho hai đường tròn bằng nhau (O) và (O’) cắt nhau tại A và B. Kẻ dây AM của đường tròn (O) và dây BN của đường tròn (O’) sao cho AM // BN.
Hướng dẫn giải
Vì AM // BN (gt) => ∠MAB = ∠ABN (so le trong) (1)
Mặt khác: OA = OB = O'A = O'B nên tứ giác OAO’B là hình thoi, do đó ∠OAB = ∠ABO' (2)
Từ (1) và (2) suy ra: ∠MAO = ∠NBO'
Ta có: ΔMOA cân tại O và ΔNO'B cân tại O' có góc ở đáy bằng nhau nên ∠MOA = ∠NO'B
Do đó: ΔMOA = ΔNO'B(c.g.c) => AM = BN
Mặt khác hai đường tròn (O) và (O”) bằng nhau nên
Bài 4: Cho hai đường tròn (O; R) và (O’; R’) cắt nhau tại hai điểm A và B (R < R'). Kẻ đường kính BOC và BO’D.
a) Chứng minh rằng: Ba điểm C, A, D thẳng hàng.
b) So sánh số đo hai cung nhỏ AC và AD.
Hướng dẫn giải
a) Vì ΔABC nội tiếp đường tròn đường kính BC nên ΔABC vuông tại A hay ∠BAC = 90o .
Tương tự ta có: ∠BAD = 90o
Suy ra: ∠CAD = ∠BAD + ∠BAC = 180o nên 3 điểm C, A, D thẳng hàng.
b) Xét đường tròn (O) có:
Xét đường tròn (O’) có:
Từ đó suy ra
Bài 5: Cho đường tròn (O) đường kính AB. Điểm C thuộc đường tròn (O) sao cho SđBC = 30o, điểm M thuộc cung AC nhỏ. Gọi D và E là các điểm đối xứng với M qua AB và OC. Chứng minh rằng: ΔDOE đều.
Hướng dẫn giải
Vì SđBC = 30o => ∠BOC = 30o
Gọi I là giao điểm của MD và AB, J là giao điểm của ME và OC.
Theo giả thiết: M và D đối xứng với nhau qua AB, mà M thuộc đường tròn (O) nên D cũng thuộc đường tròn (O). Tương tự E thuộc đường tròn (O).
Tứ giác MIOJ có ∠I = ∠J = 90o
=> ∠IMJ + ∠IOJ = 180o
=> ∠IMJ = 180o - ∠IOJ = ∠BOC = 30o
Ta có ΔMOD và ΔMOE cân tại O nên:
∠MOD = 180o - 2∠DMO
∠MOE = 180o - 2∠EMO
=> ∠MOD + ∠MOE = 360o - 2(∠DMO + ∠EMO)
⇔ 360o - ∠DOE = 360o - ∠IMJ
⇔ ∠DOE = 2∠IMJ = 60o
Vậy ΔDOE đều.
Bài 6: Cho điểm M chuyển động trên nửa đường tròn (O) đường kính AB. Vẽ hai tiếp tuyến Ax và By với đường tròn (O). Tiếp tuyến tại M với (O) cắt Ax tại C và cắt By tại D; các đường thẳng CO và OD cắt (O) lần lượt tại E và F.
a) Tính Sđ EF.
b) Tìm tập hợp tâm I của đường tròn ngoại tiếp .
Hướng dẫn giải
a) Vì CA và BM là hai tiếp tuyến với (O) nên OC là tia phân giác của ∠AOM .
Tương tự ta có OD là tia phân giác của ∠BOM
Mà ∠AOM và ∠BOM là hai góc kề bù, suy ra OC ⊥ OD
Vậy ta có ∠COD = 90o hay SđEF = 90o .
b) * Phần thuận:
Vì ΔCOD vuông tại O nên tâm I của đường tròn ngoại tiếp tam giác ΔCOD là trung điểm của CD.
Dễ thấy tứ giác ABCD là hình thang có OI là đường trung bình nên OI//AC => OI ⊥ AB.
Vậy I chuyển động trên đường thẳng d vuông góc với AB tại O.
* Phần đảo và giới hạn: Học sinh tự chứng minh.
Bài 7: Cho AB là dây cung của đường tròn (O), I là trung điểm của AB. Trên cung nhỏ AB lấy điểm M tùy ý. Gọi giao điểm OI và MI với (O) lần lượt C và N. So sánh và .
Hướng dẫn giải
Kẻ OH ⊥ MN
Ta có: ΔOHI vuông tại H nên OH < OI.
Mà OH, OI lần lượt là các khoảng cách từ O đến hai dây MN và AB nên suy ra AB < MN. Do đó
Bài 8: Cho ΔABC đều. Vẽ nửa đường tròn tâm O đường kính BC ra phía ngoài ΔABC. Gọi D và E là hai điểm thuộc nửa đường tròn sao cho cungBD = cungDE = cungEC . AD và AE cắt BC lần lượt tại M và N. Chứng minh rằng:
a) ΔABN ∼ ΔECN
b) BM = MN = NC
Hướng dẫn giải
b) Vì ΔABC và ΔOCE là hai tam giác đều có BC = 2OC nên suy ra AB = 2CE.
Lại có: ΔABN ∼ ΔECN (chứng minh a)
⇔ BN = 2NC do đó: BM = MN = NC.
Bài 9: Qua điểm M nằm ngoài đường tròn (O), vẽ hai cát tuyến MAB và MCD với đường tròn sao cho AB > CD. Gọi H và K lần lượt là trung điểm của AB và CD. Chứng minh rằng:
a) MH > MK
b) ∠MOH > ∠MOK
Hướng dẫn giải
a) Vì H, K lần lượt là trung điểm của AB, CD nên OH ⊥ AB, OK ⊥ CD (quan hệ giữa đường kính và dây cung).
Ta có: AB > CD => OH < OK (liên hệ giữa dây cung và khoảng cách đến tâm).
=> MH > MK
Vì ∠MHO = ∠MKO = 90o nên H, K cùng thuộc đường tròn đường kính MO.
Trong đường tròn đường kính MO, ta có MH > MK
Mặt khác: ∠MOH = 1/2 SđMH
∠MOK = 1/2 SđMK
Từ đó suy ra: ∠MOH > ∠MOK .
Bài 10: Trên đường tròn (O; R), lấy lần lượt theo cùng một chiều các điểm A, B, C, D sao cho
Chứng minh rằng SΔAOB = SΔCOD .
Hướng dẫn giải
Kéo dài OC cắt đường tròn (O) tại E.
Do đó: ΔAOB = ΔEOD nên SΔAOD = SΔEOD (1)
Mặt khác: ΔEOD và ΔCOD có chung chiều cao kẻ từ D xuống EC và độ dài hai đáy EO = OC nên SΔEOD = SΔCOD (2)
Từ (1) và (2) suy ra: SΔAOB = SΔCOD .
Góc nội tiếp
A. Phương pháp giải
1. Góc nội tiếp là góc có đỉnh nằm trên đường tròn và hai cạnh chứa hai dây cung của đường tròn đó.
Cung nằm bên trong góc gọi là cung bị chắn.
2. Trong một đường tròn, số đo của góc nội tiếp bằng một nửa số đo của cung bị chắn.
3. Trong một đường tròn:
a) Các góc nội tiếp bằng nhau chắn các cung bằng nhau.
b) Các góc nội tiếp cùng chắn một cung hoặc chắn các cung bằng nhau thì bằng nhau.
c) Góc nội tiếp (nhỏ hơn hoặc bằng) có số đo bằng nửa số đo của góc ở tâm cùng chắn một cung.
d) Góc nội tiếp chắn nửa đường tròn là góc vuông.
B. Bài tập tự luận
Bài 1: Cho hai đường tròn (O; R) và (O’; R’) cắt nhau tại A và B . Vẽ cát tuyến CAD vuông góc với AB . Tia CB cắt (O’) tại E, tia BD cắt (O) tại F. Chứng minh rằng:
a) ∠CAF = ∠DAE
b) AB là tia phân giác của
c) CA.CD = CB.CE
d) CD2 = CB.CE + BD.CF
Hướng dẫn giải
Vì CD ⊥ AB => ∠CAB = 90o
Mà ∠CAB = 1/2 Sđ BC => Sđ BC = 180o
Vậy ba điểm B, O, C thằng hàng.
Chứng minh tương tự ta có B, O’, D thẳng hàng.
a) Trong (O) ta có: ∠CAF = ∠CBF (góc nội tiếp cùng chắn cung CF )
Trong (O’) ta có: ∠DAE = ∠DBE (góc nội tiếp cùng chắn cung DE )
Mà ∠CBF = ∠DBE (đối đỉnh)
Suy ra: ∠CAF = ∠DAE .
b) Nối CF và DE ta có: ∠CFB = 90o (góc nội tiếp chắn nữa đường tròn (O))
∠BED = 90 o (góc nội tiếp chắn nửa đường tròn (O’))
Xét ΔCFB và ΔDEB có:
∠CDB = ∠BED = 90o
∠CBF = ∠DBE (đối đỉnh)
=> ∠FCB = ∠EDB
Mặt khác: ∠FAB = ∠FCB (góc nội tiếp (O) cùng chắn cung FB )
∠EAB = ∠EDB (góc nội tiếp (O’) cùng chắn cung EB )
Suy ra: ∠FAB = ∠EAB hay AB là phân giác của góc ∠EAF .
c) Xét ΔCAE và ΔCBD có: ∠C chung
∠CEA = ∠BDA (góc nội tiếp (O’) cùng chắn cung AB)
=> ΔCAE ∼ ΔCBD (g.g)
=> CA/CB = CE/CD hay CA.CD = CB.CE (1)
d) Chứng minh tương tự câu c) ta có: DA.DC = DB.DF (2)
Từ (1) và (2) suy ra:
CA.CD + DA.DC = CB.CE + DB.DF
⇔ (CA + DA)CD = CB.CE + DB.DF
⇔ CD2 = CB.CE + DB.DF
Bài 2: Cho đường tròn (O; R) và một điểm M bên trong đường tròn đó. Qua M kẻ hai dây cung AB và CD vuông góc với nhau (C thuộc cung nhỏ AB). Vẽ đường kính DE. Chứng minh rằng:
a) MA.MB = MC.MD.
b) Tứ giác ABEC là hình thang cân.
c) Tổng có giá trị không đổi khi M thay đổi vị trí trong đường tròn (O).
Hướng dẫn giải
a) Xét ΔAMC và ΔDMB có:
∠ACD = ∠ABD (góc nội tiếp cùng chắn cung AD)
∠AMC = ∠BMD = 90o (gt)
=> ΔAMC ∼ ΔDMB (g.g)
=> MA/MD = MC/MB => MA.MB = MC.MD
b) Vì ∠DCE = 90o (góc nội tiếp chắn nửa đường tròn)
=> CD ⊥ CE
CD ⊥ AB (gt)
=> AB // CE.
=> Tứ giác ABEC là hình thang (1).
Mặt khác: CE và AB là hai dây song song của đường tròn (O) chắn hai cung AC và BE nên
Từ (1) và (2) suy ra tứ giác ABEC là hình thang cân.
c)
=> EB = BC .
Mặt khác: ∠DAE = 90o (góc nội tiếp chắn nửa đường tròn)
Do đó: MA2 + MB2 + MC2 + MD2
= (MA2+ MD2) + (MB2 + MC2)
= AD2 + BC2 = DE2 = 4R2 không đổi
Bài 3: Cho ΔABC nội tiếp đường tròn (O; R), kẻ AH ⊥ BC, AO cắt (O) tại D. Chứng minh rằng:
a) ΔABH ∼ ΔADC .
b) S= abc/4R (S: diện tích tam giác ABC; a, b, c: độ dài cạnh của ΔABC)
Hướng dẫn giải
a) Xét ΔABH và ΔADC có:Xét ΔABH và ΔADC có:
∠AHB = ∠ACD = (90o)
∠ABC = ∠ADC (góc nội tiếp cùng chắn cung AC )
=> ΔABH ∼ ΔADC
b) Vì ΔABH ∼ ΔADC => AB/AD = AH/AC
=> AH = AB.AC/AD = bc/2R
Do đó diện tích tam giác ABC là:
S= 1/2 AH.BC = 1/2 . bc/2R. a = abc/4R
Bài 4: Cho nửa đường tròn (O) đường kính AB và C là điểm chính giữa của cung AB. Lấy điểm M thuộc cung BC và điểm N thuộc tia AM sao cho AN = BM. Kẻ dây CD song song với AM.
a) Chứng minh ΔACN = ΔBCM .
b) Chứng minh ΔCMN vuông cân.
c) Tứ giác ANCD là hình gì? Vì sao?
Hướng dẫn giải
a) Xét ΔACN và ΔBCM có:
+ AC = BC (vì C là điểm chính giữa cung AB)
+ ∠CAN = ∠CBN (hai góc nội tiếp cùng chắn cung CM)
+ AN = BM (gt)
=> ΔACN = ΔBCM (c.g.c)
b) Vì ΔACN = ΔBCM (chứng minh a)
=> CN = CM => ΔCMN cân tại C (1)
Lại có ∠CMA = 1/2Sđ AC = 1/2. 90o = 45o
Từ (1) và (2) suy ra ΔCMN vuông cân tại C.
Vì CD // AM nên tứ giác ADCM là hình thang cân.
Ta có: ∠DAM = ∠CMN = ∠CNM = 45o
Suy ra: AD // CN.
Vậy tứ giác ADCN là hình bình hành.
Bài 5: Cho ΔABC cân tại A nội tiếp đường tròn (O). M là một điểm bất kỳ thuộc cung nhỏ AC. Tia AM cắt BC tại N. Chứng minh rằng:
a) AB2 = AM.AN
b) ∠ACM = ∠ANC
Hướng dẫn giải
a) Vì ΔABC cân tại A nên ∠ABC = ∠ACB
Lại có ∠ACB = ∠AMB (góc nội tiếp cùng chắn cung AB )
Suy ra: ∠ABN = ∠AMB
Do đó: ΔABM ∼ ΔANB (g.g)
=> AB/AN = AM/MB
=> AB2 = AN. AM
b) Vì ΔABM ∼ ΔANB => ∠ABM = ∠ANB
Mà ∠ABM = ∠ACM (góc nội tiếp cùng chắn cung AM)
Do đó: ∠ACM = ∠ANC
Bài 6: Cho ΔABC có AD là tia phân giác trong của góc A. Qua D kẻ đường thẳng song song với AB cắt AC ở E và đường thẳng song song với AC cắt AB ở F.
a) Tứ giác AEDF là hình gì? Vì sao?
b) Đường tròn đường kính AD cắt AB và AC lần lượt tại các điểm M và N. Chứng minh: MN // EF.
Hướng dẫn giải
a) Ta có:
b) ΔABC có AD là tia phân giác trong của góc A
Bài 7: Cho hai đường tròn (O; R) và (O’; R’) tiếp xúc trong với nhau tại A, (R > R'). Qua điểm B bất kỳ trên (O’) vẽ tiếp tuyến với (O’) cắt (O) tại hai điểm M và N, AB cắt (O) tại C. Chứng minh rằng:
a) MN ⊥ OC
b) AC là tia phân giác của ∠MAN
Hướng dẫn giải
a) Vì Δ O'AB cân tại O’ nên ∠O'AB = ∠O'BA
Δ OAC cân tại O nên ∠OAC = ∠OCA
Suy ra ∠O'BA = ∠OCA, mà hai góc này ở vị trí đồng vị, do đó O’B // OC.
Mặt khác MN là tiếp tuyến của (O’) tại B
=> O'B ⊥ MN. Do đó OC ⊥ MN
b) Trong đường tròn (O):
=> OC là đường trung trực của MN
=> CM = CN
=> ∠MAC = ∠NAC
Hay AC là tia phân giác của ∠MAN .
Bài 8: Cho nửa đường tròn (O) đường kính AB và C là điểm chính giữa cung AB. M là điểm bất kỳ trên cung BC, kẻ CH ⊥ AM.
a) Chứng minh ΔHCM vuông cân và OH là tia phân giác của ∠COM
b) Gọi I là giao điểm của OH với BC và D là giao điểm của MI với nửa đường tròn (O). Chứng minh MC // BD.
Hướng dẫn giải
ΔHCM vuông cân tại H.
Do đó CH = HM
Dễ thấy ΔCOH = ΔMOH (c.c.c)
=> ∠COH = ∠MOH
Vậy OH là tia phân giác của ∠COM
b) Dễ thấy ΔCOI = ΔMOI (c.g.c) nên CI = MI => ΔCMI cân tại M.
Do đó ∠CMI = ∠MCI.
Lại có ∠CMD = ∠CBD (góc nội tiếp cùng chắn cung CD)
Suy ra ∠MCB = ∠CBD, mà hai góc này ở vị trí so le trong nên MC // BD.
Bài 9: Qua điểm A nằm ngoài đường tròn (O) kẻ hai cát tuyến ABC và ADE với đường tròn đó (B nằm giữa A và C, A nằm giữa A và E). Kẻ dây BF // DE. Chứng minh rằng:
a) ∠DBF = ∠BCE
b) ΔACE ∼ ΔDCF
Hướng dẫn giải
a) Ta có
Mặt khác DE // BF
=>
Từ đó suy ra ∠DBF = ∠BCE.
c) Vì BF // DE nên ∠CBF = ∠CAE (đồng vị)
Mà ∠CBF = ∠CDF (góc nội tiếp cùng chắn cung CF) => ∠CDF = ∠CAE (1)
Lại có ∠CED = ∠CFD (gócc nội tiếp cùng chắn cung CD) (2)
Từ (1) và (2) suy ra ΔACE ∼ ΔDCF (g.g)
Bài 10: Qua điểm M nằm trong đường tròn (O) kẻ hai dây AB và CD vuông góc với nhau. Chứng minh rằng:
a) Đường cao MH của tam giác AMD đi qua trung điểm I của BC.
b) Đường trung tuyến MI của ΔBMC vuông góc với AD.
Hướng dẫn giải
a) Giả sử MH cắt BC tại I. Ta cần chứng minh I là trung điểm của BC.
Ta có ∠ADC = ∠ABC (góc nội tiếp cùng chắn cung AC) (1)
Lại có ∠AMH = ∠ADM (cùng phụ với góc ∠MAD)
Mà ∠AMH = ∠IMB (đối đỉnh)
=> ∠ADM = ∠IMB (2)
Từ (1) và (2) suy ra: ∠IMB = ∠IBM => ΔIMB cân tại I.
Do đó IM = IB.
Chứng minh tương tự ta có: IM = IC
Suy ra IB = IC = IM hay I là trung điểm của BC.
b) Học sinh tự chứng minh.
Bài 11: Cho AB và CD là hai đường kính vuông góc với nhau của đường tròn (O; R). Qua điểm M thuộc cung nhỏ AC (M ≠ A, M ≠ E)kẻ tiếp tuyến với đường tròn cắt AB, CD lần lượt tại E, F.
a) Chứng minh: ∠MFO = 2.∠MBO
b) Xác định vị trí điểm M trên cung nhỏ AC sao cho ∠FEO = 30o. Khi đó tính độ dài đoạn thẳng OE, ME, EF theo R.
Hướng dẫn giải
a) Ta có: ∠MOA = 2∠MBO (cùng chắn cung MA)
Vì EF là tiếp tuyến với (O) tại M nên OM ⊥ EF
Ta có ∠MOA = ∠EFO (cùng phụ với góc ∠FEO )
Suy ra ∠EFO = 2∠MBO
b) Ta có: ∠FEO = 30o ⇔ ∠MOA = 60o
⇔ ΔAOM đều nên AM = OA = R.
Vậy nếu M ∈ (O) và AM = R thì ∠FEO = 30o
Khi đó ΔOME vuông tại M nên
ME = MO. tan∠MOA = √3R
OE = 2MO = 2R
Vì ΔEOF vuông tại O nên cos ∠FEO = EO/EF
=> EF = EO/cos ∠FEO = 2R / cos30o = 4R√3 /3
Góc tạo bởi tia tiếp tuyến và dây cung
A. Phương pháp giải
1. Định nghĩa
Cho xy là tiếp tuyến tại A với đường tròn (O).
Góc ∠BAx có đỉnh A nằm trên đường tròn, cạnh Ax là một tia tiếp tuyến còn cạnh kia chứa dây cung AB.
Góc ∠BAx được gọi là góc tạo bởi tia tiếp tuyến và dây cung.
Dây AB căng hai cung. Cung nằm bên trong góc là cung bị chắn. Trên hình vẽ, góc ∠BAx có cung bị chắn là cung nhỏ AB , góc ∠BAy có cung bị chắn là cung lớn AB.
2. Số đo của góc tạo bởi tia tiếp tuyến và dây cung bằng nửa số đo của cung bị chắn.
3. Trong một đường tròn, góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung thì bằng nhau.
B. Bài tập tự luận
Bài 1: Cho ΔABC nội tiếp đường tròn (O), (AB < AC). Trên tia đối của tia BC lấy điểm M sao cho MA2 = MB.MC. Chứng minh rằng: MA là tiếp tuyến của đường tròn (O).
Hướng dẫn giải
Vì MA2 = MB.MC => MA/MB = MC/MA
Xét ΔMAC và ΔMBA có
∠M chung
MA/MB = MC/MA
=> ΔMAC ∼ ΔMBA (c.g.c)
=> ∠MAB = ∠MCA (1)
Kẻ đường kính AD của (O)
Ta có ∠ACB = ∠ADB (hai góc nội tiếp cùng chắn cung AB )
Mà ∠MAB = ∠MCA (chứng minh trên)
Suy ra ∠MAB = ∠ADB (3)
Lại có ∠ABD = 90o (góc nội tiếp chắn nửa đường tròn)
=> ∠BAD + ∠BDA = 90o (4)
Từ (3) và (4) suy ra ∠BAD + ∠MAB = 90o hay ∠MAO = 90o
=> OA ⊥ MA
Do A ∈ (O)
=> MA là tiếp tuyến của (O).
Bài 2: Từ điểm M nằm ngoài đường tròn (O) vẽ hai tiếp tuyến MA, MB với (O) tại A và B. Qua A vẽ đường thẳng song song với MB cắt đường tròn tại C. Nối C với M cắt đường tròn (O) tại D.Nối A với D cắt MB tại E. Chứng minh rằng:
a) ΔABE ∼ ΔBDE; ΔMEA ∼ ΔDEM.
b) E là trung điểm của MB.
Hướng dẫn giải
a) Xét ΔABE và ΔBDE có:
+ ∠E chung
+ ∠BAE = ∠DBE (góc nội tiếp và góc giữa tia tiếp tuyến và dây cung cùng chắn cung BD )
=> ΔABE ∼ ΔBDE (g.g)
Vì AC // MB nên ∠ACM = ∠CMB (so le trong)
Mà ∠ACM = ∠MAE (góc nội tiếp và góc giữa tia tiếp tuyến và dây cung cùng chắn cung AD )
Suy ra: ∠CMB = ∠MAE
Xét ΔMEA và ΔDEM có:
+ ∠E chung
+ ∠MAE = ∠CMD (chứng minh trên)
=> ΔMEA ∼ ΔDEM (g.g)
b) Theo chứng minh a) ta có:
ΔABE ∼ ΔBDE => AE/BE = BE/DE => EB2 = AE.DE
ΔMEA ∼ ΔDEM => ME/DE = EA/EM => ME2 = DE.EA
Do đó EB2 = EM2 hay EB = EM.
Vậy E là trung điểm của MB.
Bài 3: Cho hai đường tròn (O) và (O’) tiếp xúc ngoài với nhau tại M. Kẻ đường thẳng d tiếp xúc với (O) tại A và cắt (O’) tại B và C (B nằm giữa A và C)
Gọi D là giao điểm của CM và (O). Chứng minh rằng:
a) MA là phân giác của ∠BMD
b) MA2 = MB.MD
Hướng dẫn giải
a) Kẻ tiếp tuyến chung Mx của hai đường tròn (O) và (O’)
Ta có:
∠BAM = ∠AMx (góc giữa tia tiếp tuyến và dây cung cùng chắn cung AM của (O)).
∠BMx = ∠BCM (góc giữa tia tiếp tuyến và dây cung cùng chắn cung MB của (O’)).
Mặt khác ∠AMD = ∠MAB + ∠MCB (∠AMD là góc ngoài của tam giác AMC)
=> ∠AMD = ∠AMx + ∠BMx = ∠BMA
Vậy MA là phân giác của ∠BMD .
b) Xét ΔMAD và ΔBMD có:
+) ∠AMD = ∠BMA (chứng minh a))
+) ∠ADM = ∠BAM
=> ΔMAD ∼ ΔMBA (g.g)
=> MA/MB = MD/MA hay MA2 = MB.MD
Bài 4: Cho điểm C thuộc nửa đường tròn (O) đường kính AB. Từ điểm D thuộc đọan AO kẻ đường thẳng vuông góc với AO cắt AC và BC lần lượt lại E và F. Tiếp tuyến C với nửa đường tròn cắt EF tại M và cắt AB tại N.
a) Chứng minh M là trung điểm của EF.
b) Tìm vị trí của điểm C trên đường tròn (O) sao cho ΔACN cân tại C.
Hướng dẫn giải
a) Ta có ∠MCA = 1/2 Sđ AC (góc giữa tiếp tuyến và dây cung chắn cung AC) (1)
Lại có ∠MEC = ∠AED = 90o - ∠EAD = 90o - 1/2 Sđ BC = 1/2Sđ AC (2)
Từ (1) và (2) suy ra ∠MCE = ∠MEC
Vậy ΔMEC cân tại M, suy ra MC = ME.
Chứng minh tương tự ta có MC = MF.
Suy ra ME = MF hay M là trung điểm của EF.
b) ΔACN cân tại C khi và chỉ khi ∠CAN = ∠CNA
Vì MN là tiếp tuyến với (O) tại C nên OC ⊥ MN => ∠CNA = 90o - ∠COB = 90o - 2.∠CAN
Do đó: ∠CAN = ∠CNA ⇔ ∠CAN = 90o - 2.∠CAN
⇔ 3∠CAN = 90o
=> ∠CAN = 30o
=> SđBC = 60o
Vậy ΔACN cân tại C khi C nằm trên nửa đường tròn (O) sao cho SđBC = 60o .
Bài 5: Cho nửa đường tròn (O) đường kính AB = 2R. Gọi M là một điểm thay đổi trên tiếp tuyến Bx của (O). Nối AM cắt (O) tại N. Gọi I là trung điểm của AN.
a) Chứng minh: ΔAIO ∼ ΔBMN ; ΔOBM ∼ ΔINB
b) Tìm vị trí của điểm M trên tia Bx để diện tích ΔAIO có giá trị lớn nhất.
Hướng dẫn giải
a) Vì I là trung điểm của AN => OI ⊥ AN
=> ∠AIO = ∠ANB = 90o
Do Bx là tiếp tuyến với (O) tại B nên
∠NBM = ∠IAO = 1/2SđBN
Suy ra ΔAIO ∼ ΔBMN (g.g)
Vì ∠OIM = ∠OBM = 90o nên các điểm B, O, I, M cùng thuộc đường tròn đường kính MO, suy ra ∠BOM = ∠BIN
Xét ΔOBM và ΔINB có:
∠OBM = ∠INB
∠BOM = ∠BIN
Suy ra ΔOBM ∼ ΔINB (g.g)
b) Kẻ IH ⊥ AO ta có: SΔAIO = 1/2 AO.IH
Vì AO không đổi nên SΔAIO lớn nhất ⇔ IH lớn nhất.
Nhận thấy: Khi M chuyển động trên tia Bx thì I chạy trên nửa đường tròn đường kính AO. Do đó IH lớn nhất khi IH là bán kính của đường tròn, khi đó ΔAIO vuông cân tại I nên ∠IAH = 45o. Suy ra ΔABM vuông cân tại B nên BM = BA = 2R
Vậy khi M thuộc Bx sao cho BM = 2R thì SΔAIO lớn nhất.
Bài 6: Cho đường tròn (O; R) và dây AB, gọi I là trung điểm của dây AB. Trên tia dối của tia BA lấy điểm M. Kẻ hai tiếp tuyến MC, MD với đường tròn, (C,D ≠ (O)) .
a) Chứng minh rằng: Năm điểm O, I, C, M, D cùng nằm trên một đường tròn.
b) Gọi N là giao điểm của tia OM với (O). Chứng minh rằng N là tâm đường tròn nội tiếp .
Hướng dẫn giải
a) Vì MC, MD là các tiếp tuyến tại C, D với đường tròn (O) nên ∠OCM = ∠ODM = 90o (1)
Mặt khác I là trung điểm của dây AB nên OI ⊥ AB hay ∠OIM = 90o (2)
Từ (1), (2) suy ra 5 điểm M, C, D, O, I cùng thuộc đường tròn đường kính OM.
b) Vì MC, MD là các tiếp tuyến của (O) nên MO là phân giác của ∠CMD và OM là phân giác của ∠COD .
Mà: ∠DCN = ∠NCM = 1/2 Sđ CN
Suy ra CN là phân giác của ∠DCM(4)
Từ (3) và (4) suy ra N là giao điểm các đường phân giác trong của ΔCMD hay N là tâm đường tròn nội tiếp ΔCMD