Phương pháp Tìm tập giá trị của hàm số - Toán lớp 9
Phương pháp Tìm tập giá trị của hàm số
Với Phương pháp Tìm tập giá trị của hàm số Toán lớp 9 gồm đầy đủ phương pháp giải, ví dụ minh họa và bài tập trắc nghiệm có lời giải chi tiết sẽ giúp học sinh ôn tập, biết cách làm dạng bài tập Tìm tập giá trị của hàm số từ đó đạt điểm cao trong bài thi môn Toán lớp 9.
Phương pháp giải
+ Cho hàm số y = f(x) .
Tại mỗi giá trị x = xo, tồn tại duy nhất giá trị yo = f(xo) được gọi là giá trị của hàm số tại điểm xo.
+ Lưu ý: Muốn tìm giá trị của hàm số y = f(x) tại điểm xo ta cần xét xem xo có nằm trong tập xác định của hàm số đó hay không?
Ví dụ minh họa
Ví dụ 1: Cho hàm số y = f(x) = 2x – 3.
Tính f(0) ; f(3/2) ; f(-2) ; f(3) ; f(x+2) .
Hướng dẫn giải:
Tập xác định: R.
+ f(0) = 2.0 - 3 = -3.
+ f(3/2) = 2.3/2 - 3 = 0.
+ f(-2) = 2.(-2) - 3 = -7.
+ f(3) = 2.3 - 3 = 3.
+ f(x+2) = 2.(x+2) - 3 = 2x + 4 - 3 = 2x + 1.
Ví dụ 2: Tìm các giá trị của x sao cho y = 0 với:
Hướng dẫn giải:
a) Đkxđ: x > 2.
⇔ x2 – 3x + 2 = 0 ⇔ (x – 1)(x – 2) = 0 ⇔ x = 1 hoặc x = 2.Cả hai giá trị đều không thỏa mãn đkxđ.
Vậy không có giá trị nào của x để y = 0.
b) Đkxđ: x ≠ 2.
Vậy với x = 0 thì y = 0.
c) Đkxđ : x ≤ 2.
Vậy với x = 1 hoặc x = 2 thì y = 0.
Ví dụ 3: Tìm giá trị lớn nhất của các hàm số sau :
a) y = 5 - 4x - x2
b) y = 3 - |x+1|
c) y = 2x + 3 với |x| ≤ 2.
Hướng dẫn giải:
a) y = 5 - 4x - x2 = 9 – (4 + 4x + x2) = 9 – (x + 2)2.
Vì (x + 2)2 ≥ 0 nên 9 – (x + 2)2 ≤ 9.
Hay y = 5 – 4x – x2 ≤ 9
Dấu “=” xảy ra khi (x + 2)2 = 0 ⇔ x = -2.
Vậy hàm số đạt giá trị nhỏ nhất bằng 9 tại x = -2.
b) Ta có: |x+1| ≥ 0 với mọi x
⇒ 3 - |x+1| ≤ 3 với mọi x.
Dấu “=” xảy ra khi x + 1 = 0 ⇔ x = -1.
Vậy hàm số y = 3 - |x+1| đạt giá trị lớn nhất bẳng 3 khi x = -1.
c) Ta có : |x| ≤ 2 ⇔ -2 ≤ x ≤ 2.
⇒ -4 ≤ 2x ≤ 4
⇒ -1 ≤ 2x + 3 ≤ 7.
Vậy giá trị lớn nhất của hàm số y = 2x + 3 với x thỏa mãn |x| ≤ 2 là 7 khi x = 2.
Bài tập trắc nghiệm tự luyện
Bài 1: Cho hàm số y = -x2 + 2x + 3 . Giá trị của hàm số tại x = √3 - 1 là:
A. 5 B. 4√3 - 3 C. 4√3 + 3 D. 4√3 - 2
Lời giải:
Đáp án B
Bài 2: Giá trị hàm số tại x = 5 là:
A. 1/2 B. Không tồn tại C. 1/4 D. -1/4 .
Lời giải:
Đáp án A
Bài 3: Hàm số y = x - 1/x bằng không tại x bằng:
A. x = ±2 B. x = 0 C. x = ±1 D. x = 2.
Lời giải:
Đáp án C
Bài 4: Giá trị nhỏ nhất của hàm số y = x2 + 2x - 2 bằng:
A. -2 B. -3 C. 0 D. 2.
Lời giải:
Đáp án B
Bài 5: Giá trị lớn nhất của hàm số bằng:
A. 3 B. 4 C. 5 D. 6
Lời giải:
Đáp án C
Bài 6: Cho hàm số y = f(x) =
Tính f(-3); f(-2); f(-1); f(0); f(3); f(5) .
Hướng dẫn giải:
Đkxđ: x > 1 hoặc x < 1.
Ta có: y = f(x) =
f(-3) = .
f(-2) = .
f(-1); f(0) không tồn tại vì -1 và 0 không thuộc tập xác định.
f(3) = .
f(-5) = .
Bài 7: Cho các hàm số:
a) y = x - 1/x b) y = x2 + 2x - 1 c) y = x2 - 2√(x2 - 1)
Tìm các giá trị của x để giá trị của các hàm số trên bằng 0.
Hướng dẫn giải:
a) Đkxđ: x ≠ 0
Ta có: y = x- 1/x =
y = 0 ⇔
Vậy với x = ±1 thì hàm số có giá trị bằng 0.
b) y = 0 ⇔ x2 + 2x - 1 = 0
⇔ x2 + 2x + 1 - 2 = 0
⇔ (x+1)2 = 2
⇔ x+1 = ±√2
⇔ x = -1 ±√2
Vậy hàm số có giá trị bằng 0 tại .
c) Đkxđ: x ≥ 1 hoặc x ≤ -1 .
y = 0 ⇔
⇔ x4 = 4(x2 - 1)
⇔ x4 - 4x2 + 4 = 0
⇔ (x2 - 2)2 = 0
⇔ x2 = 2 ⇔ x = ±√2 (t.m đkxđ)
Vậy hàm số có giá trị bằng 0 tại x = ±√2 .
Bài 8: Tìm giá trị nhỏ nhất của các hàm số:
a) y = x2 + 2x + 4
Hướng dẫn giải:
a) y = x2 + 2x + 4 = (x2 + 2x + 1 ) + 3 = (x+1)2 + 3
Vì (x+1)2 ≥ 0 nên y ≥ 3 .
Dấu “=” xảy ra khi x = -1.
Vậy hàm số đạt giá trị nhỏ nhất bằng 3 tại x = -1.
b)
Ta có: x2 ≥ 0 nên x2 + 4 ≥ 4 ⇒
+ y = 4 khi x = 0.
Vậy hàm số đạt giá trị nhỏ nhất bằng 4 tại x = 0.
c) Đkxđ: x > 1.
Vì nên
y = 1 khi x = 1.
Vậy hàm số đạt giá trị nhỏ nhất bằng 1 tại x = 1.
Bài 9: Tìm giá trị lớn nhất của các hàm số:
a) y = -x2 + 2x + 4
Hướng dẫn giải:
a) y = -x2 + 2x + 4 = (-x2 + 2x -1) +5 = 5 - (x-1)2 .
Vì (x-1)2 ≥ 0 ⇒ -(x-1)2 ≤ 0 ⇒ y = 5 - (x-1)2 ≤ 5
y = 5 khi (x-1)2 = 0 ⇔ x = 1.
Vậy hàm số đạt giá trị lớn nhất bằng 5 tại x = 1.
b) Đkxđ: x ≥ 1/2
Vì 3x4 ≥ 0 ⇒ 3x4 + 1 ≥ 1
nêny = 1 khi 3x4 = 0 ⇔ x = 0.
Vậy hàm số đạt giá trị lớn nhất bằng 1 tại x = 0.
c) Ta có: x2 + 3 ≥ 3 nên
y = 1/3 khi x2 = 0 ⇔ x = 0.
Vậy hàm số đạt giá trị lớn nhất bằng 1/3 tại x = 0.
Bài 10: Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số:
Hướng dẫn giải:
+ Đkxđ: 1 – 4x – x2 ≥ 0.
+ Ta có: nên .
Dấu “=” khi 1 – 4x – x2 = 0 ⇔ 5 - (4 + 4x + x2) = 0
⇔ 5 - (x+2)2 = 0
⇔ (x+2)2 = 5
⇔ x = -2±√5.
Vậy hàm số đạt giá trị nhỏ nhất bằng 0 tại x = -2±√5 .
+ Lại có: nên
Vì (x+2)2 ≥ 0 nên 5 - (x+2)2 ≤ 5 ⇒ y ≤ √5.
y = √5 khi (x + 2)2 = 0 ⇔ x + 2 = 0 ⇔ x = -2.
Vậy hàm số đạt giá trị lớn nhất bằng √5 tại x = -2.