X

Bài tập trắc nghiệm Toán 10 Cánh diều

30 Bài tập trắc nghiệm Toán 10 Chương 5 Cánh diều (có lời giải)


Haylamdo biên soạn và sưu tầm 50 bài tập trắc nghiệm Toán 10 Chương 5: Đại số tổ hợp có đáp án và lời giải chi tiết đầy đủ các mức độ sách Cánh diều sẽ giúp học sinh ôn luyện trắc nghiệm để biết cách làm các dạng bài tập Toán 10.

30 Bài tập trắc nghiệm Toán 10 Chương 5 Cánh diều (có lời giải)

Câu 1. Cho 7 chữ số 0; 2; 3; 4; 5; 6 ; 7 số các số tự nhiên lẻ có 3 chữ số lập thành từ các chữ số trên

A. 60;

B. 210;

C. 126;

D. 180.

Câu 2.Hệ số của x5 trong khai triển của (5 – 2x)5

A. 400;

B. – 32;

C. 3 125;

D. – 6 250.

Câu 3.Có 7 quả cầu đỏ khác nhau, 5 quả cầu vàng khác nhau và 3 quả cầu trắng khắc nhau. Hỏi có bao nhiêu cách lấy 3 quả cầu có đủ ba màu.

A. 105;

B. 320;

C. 15;

D. 319.

Câu 4. Cho các số 0; 5; 6; 7; 8 có thể lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau

A. 12;

B. 96;

C. 64;

D. 256.

Câu 5. Có bao nhiêu số tự nhiên có 3 chữ số, mà tất cả các chữ số đều chẵn:

A. 80;

B. 60;

C. 243;

D. 100.

Câu 6.Cho số tự nhiên n thỏa mãn An2+2Cnn=22. Hệ số của số hạng chứa x3 trong khai triển của biểu thức (3x – 4)n bằng

A. – 4320;

B. – 1440;

C. 4320;

D. 1080.

Câu 7.Có bao nhiêu số tự nhiên n thỏa mãn An3+5An2=2n+15?

A. 0;

B. 1;

C. 2;

D. 3.

Câu 8. Từ các chữ số 0; 1; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên chẵn có bốn chữ số?

A. 720;

B. 2401;

C. 1176;

D. 2058.

Câu 9. Từ các chữ số 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên chẵn gồm 4 chữ số

A. 375;

B. 625;

C. 120;

D. 250.

Câu 10.Giá trị của x thoả mãn phương trình Ax10+Ax9=9Ax8 là:

A. x = 10;

B. x = 9;

C. x = 11;

D. x = 12.

Câu 11. Có bao nhiêu cách sắp xếp 20 thí sinh vào một phòng thi có 20 bàn mỗi bàn một thí sinh.

A. 20;

B. 1;

C. 2020;

D. 20!.

Câu 12. Số hạng chứa x4 trong khai triển biểu thức (2x + 3)5 là:

A. 32x4;

B.240x4;

C. 720;

D. 240.

Câu 13. Tìm số tự nhiên n thỏa An2=210.

A. 15;

B. 12;

C. 21;

D. 18.

Câu 14: Giá trị của n thỏa mãn 3An2A2n2+42=0 là:

A. 7;

B. 8;

C. 6;

D. 9.

Câu 15.Có bao nhiêu giá trị của x thoả mãn PxAx2+72=6(Ax2+2Px).

A. 1;

B. 2;

C. 3;

D. 4.

Câu 16.Tổng hệ số của x3 và x2 trong khai triển (1 + 2x)4 là :

A. 24;

B. 44;

C. 20;

D. 54.

Câu 17. Khai triển nhị thức (x + y)4 ta được kết quả là:

A. x4 – 4x3y + 6x2y2 – 6xy3 + y4;

B. x4 + 4x3y + 6x2y2 + 6xy3 + y4;

C. x4 + 4x3y + 8x2y2 + 8xy3 + y4.

D. x4 – 4x3y + 8x2y2 - 8xy3 + y4.

Câu 18.Trong một biểu kỉ niệm ngày thành lập trường, bí thư Đoàn trường cần chọn 4 tiết mục từ 6 tiết mục mục hát và 4 tiết mục từ 5 tiết mục múa rồi xếp thứ tự biểu diễn. Hỏi có bao nhiêu cách chọn và xếp thứ tự sao cho các tiết mục hát và múa xen kẽ nhau?

A. 43 200;

B. 75;

C. 86 400;

D. 480.

Câu 19. Một bàn dài có 2 dãy ghế đối diện nhau, mỗi dãy gồm có 5 ghế. Người ta muốn xếp chỗ ngồi cho 5 học sinh trường A và 5 học sinh trường B vào bàn nói trên. Hỏi có bao nhiêu cách xếp chỗ ngồi để bất kì 2 học sinh nào ngồi đối diện thì khác trường nhau.

A. 450610;

B. 432500;

C. 460500;

D. 460800.

Câu 20.Trong một giải cờ vua gồm nam và nữ vận động viên. Mỗi vận động viên phải chơi hai ván với mỗi động viên còn lại. Cho biết có 2 vận động viên nữ và cho biết số ván các vận động viên chơi nam chơi với nhau hơn số ván họ chơi với hai vận động viên nữ là 84. Hỏi số ván tất cả các vận động viên đã chơi?

A.168;

B.156;

C.132;

D.182.

Câu 21. Một đội cổ động viên gồm có 3 người mặc áo vàng, 4 người mặc áo đỏ, 5 người mặc áo xanh. Hỏi có bao nhiêu cách xếp các cổ động viên thành một hàng dọc sao cho các cổ động viên cùng màu áo đứng cạnh nhau?

A. 345600;

B. 518400;

C. 725760;

D. 103680.

Câu 22.Một đa giác đều có số đường chéo gấp đôi số cạnh. Hỏi đa giác đó có bao nhiêu cạnh?

A. 5;

B. 6;

C. 7;

D. 8.

Câu 23. Giá trị của n bằng bao nhiêu, biết 5C5n2C6n=14C7n

A. n = 2 hoặc n = 4;

B. n = 5;

C. n = 4;

D. n = 3.

Câu 24.Hệ số của x2 trong khai triển (2 – 3x)3 là k. Nhận xét nào sau đây đúng về k ?

A. k là một số tự nhiên;

B. k là một số nguyên âm;

C. k là một số nguyên dương;

D. k = 0.

Câu 25. Cho đa giác đều n đỉnh, n ℕ; n ≥ 3. Tìm giá trị của n biết rằng đa giác đã cho có 135 đường chéo.

A. 15;

B. 27;

C. 8;

D. 18.

Câu 26.Trong không gian cho 2n điểm phân biệt n ℕ; n ≥ 3, trong đó không có 3 điểm nào thẳng hàng và trong 2n điểm đó có đúng n điểm cùng nằm trên mặt phẳng. Biết rằng có đúng 505 mặt phẳng phân biệt được tạo thành từ 2n điểm đã cho. Tìm n?

A.n = 9;

B.n = 7;

C. Không có n thỏa mãn;

D.n = 8.

Câu 27. Cho k, n là các số nguyên dương, k ≤ n. Trong các phát biểu sau, phát biểu nào sai?

A. Ank=nn1...nk+1;

B. Pn = n(n – 1)(n – 2)...2.1;

C. Pn = n!;

D. Ank=n!k!.

Câu 28.Trong khai triển (x + 2y)5 số hạng chứa x2y3 là:

A. 80x2y3;

B. 40x2y3;

C. 80;

D. 10.

Câu 29.Trong khai triển nhị thức (2a + 1)5 ba số hạng đầu là:

A. 32a5 + 40a4 + 10a3;

B. 80a5 + 80a4 + 40a3;

C. 32a5 + 80a4 + 40a3;

D. 32a5 + 80a4 + 80a3.

Câu 30.Từ các chữ số 0; 1; 2; 3; 5; 8 có thể lập được bao nhiêu số tự nhiên chẵn có ba chữ số đôi một khác nhau và phải có mặt chữ số 2.

A. 36;

B. 21;

C. 120;

D. 144.

Câu 1:

Cho 7 chữ số 0; 2; 3; 4; 5; 6 ; 7 số các số tự nhiên lẻ có 3 chữ số lập thành từ các chữ số trên

A. 60;
B. 210;
C. 126;
D. 180.

Xem lời giải »


Câu 2:

Hệ số của x5 trong khai triển của (5 – 2x)5

A. 400;
B. – 32;
C. 3 125;
D. – 6 250.

Xem lời giải »


Câu 3:

Có 7 quả cầu đỏ khác nhau, 5 quả cầu vàng khác nhau và 3 quả cầu trắng khắc nhau. Hỏi có bao nhiêu cách lấy 3 quả cầu có đủ ba màu.

A. 105;
B. 320;
C. 15;
D. 319.

Xem lời giải »


Câu 4:

Cho các số 0; 5; 6; 7; 8 có thể lập được bao nhiêu số tự nhiên có 4 chữ số đôi một khác nhau
A. 12;
B. 96;
C. 64;
D. 256.

Xem lời giải »


Câu 5:

Có bao nhiêu số tự nhiên có 3 chữ số, mà tất cả các chữ số đều chẵn:

A. 80;
B. 60;
C. 243;
D. 100.

Xem lời giải »


Câu 6:

Cho số tự nhiên n thỏa mãn \[A_n^2 + 2C_n^n = 22\]. Hệ số của số hạng chứa x3 trong khai triển của biểu thức (3x – 4)n bằng

A. – 4320;
B. – 1440;
C. 4320;
D. 1080.

Xem lời giải »


Câu 7:

Có bao nhiêu số tự nhiên n thỏa mãn \(A_n^3 + 5A_n^2 = 2\left( {n + 15} \right)\)?

A. 0;
B. 1;
C. 2;
D. 3.

Xem lời giải »


Câu 8:

Từ các chữ số 0; 1; 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên chẵn có bốn chữ số?

A. 720;
B. 2401;
C. 1176;
D. 2058.

Xem lời giải »


Câu 9:

Từ các chữ số 2; 3; 4; 5; 6 có thể lập được bao nhiêu số tự nhiên chẵn gồm 4 chữ số

A. 375;
B. 625;
C. 120;
D. 250.

Xem lời giải »


Câu 10:

Giá trị của x thoả mãn phương trình \[A_x^{10} + A_x^9 = 9A_x^8\] là:

A. x = 10;
B. x = 9;
C. x = 11;
D. x = 12.

Xem lời giải »


Câu 11:

Có bao nhiêu cách sắp xếp 20 thí sinh vào một phòng thi có 20 bàn mỗi bàn một thí sinh.

A. 20;
B. 1;
C. 2020;
D. 20!.

Xem lời giải »


Câu 12:

Số hạng chứa x4 trong khai triển biểu thức (2x + 3)5 là:

A. 32x4;
B. 240x4; 
C. 720;
D. 240.

Xem lời giải »


Câu 13:

Tìm số tự nhiên n thỏa \[A_n^2 = 210\].

A. 15;
B. 12;
C. 21;
D. 18.

Xem lời giải »


Câu 14:

Giá trị của n thỏa mãn \[3A_n^2 - A_{2n}^2 + 42 = 0\]là:

A. 7;
B. 8;
C. 6;
D. 9.

Xem lời giải »


Câu 15:

Có bao nhiêu giá trị của x thoả mãn \({P_x}A_x^2 + 72 = 6(A_x^2 + 2{P_x})\).

A. 1;
B. 2;
C. 3;
D. 4.

Xem lời giải »


Câu 16:

Tổng hệ số của x3 và x2 trong khai triển (1 + 2x)4 là :

A. 24;
B. 44;
C. 20;
D. 54.

Xem lời giải »


Câu 17:

Khai triển nhị thức (x + y)4 ta được kết quả là:

A. x4 – 4x3y + 6x2y2 – 6xy3 + y4;
B. x4 + 4x3y + 6x2y2 + 6xy3 + y4;
C. x4 + 4x3y + 8x2y2 + 8xy3 + y4.
D. x4 – 4x3y + 8x2y2 - 8xy3 + y4.

Xem lời giải »


Câu 18:

Trong một biểu kỉ niệm ngày thành lập trường, bí thư Đoàn trường cần chọn 4 tiết mục từ 6 tiết mục mục hát và 4 tiết mục từ 5 tiết mục múa rồi xếp thứ tự biểu diễn. Hỏi có bao nhiêu cách chọn và xếp thứ tự sao cho các tiết mục hát và múa xen kẽ nhau?

A. 43 200;
B. 75;
C. 86 400;
D. 480.

Xem lời giải »


Câu 19:

Một bàn dài có 2 dãy ghế đối diện nhau, mỗi dãy gồm có 5 ghế. Người ta muốn xếp chỗ ngồi cho 5 học sinh trường A và 5 học sinh trường B vào bàn nói trên. Hỏi có bao nhiêu cách xếp chỗ ngồi để bất kì 2 học sinh nào ngồi đối diện thì khác trường nhau.

A. 450610;
B. 432500;
C. 460500;
D. 460800.

Xem lời giải »


Câu 20:

Trong một giải cờ vua gồm nam và nữ vận động viên. Mỗi vận động viên phải chơi hai ván với mỗi động viên còn lại. Cho biết có 2 vận động viên nữ và cho biết số ván các vận động viên chơi nam chơi với nhau hơn số ván họ chơi với hai vận động viên nữ là 84. Hỏi số ván tất cả các vận động viên đã chơi?

A. 168;
B. 156;
C. 132;
D. 182.

Xem lời giải »


Câu 21:

Một đội cổ động viên gồm có 3 người mặc áo vàng, 4 người mặc áo đỏ, 5 người mặc áo xanh. Hỏi có bao nhiêu cách xếp các cổ động viên thành một hàng dọc sao cho các cổ động viên cùng màu áo đứng cạnh nhau?

A. 345600;
B. 518400;
C. 725760;
D. 103680.

Xem lời giải »


Câu 22:

Một đa giác đều có số đường chéo gấp đôi số cạnh. Hỏi đa giác đó có bao nhiêu cạnh?
A. 5;
B. 6;
C. 7;
D. 8.

Xem lời giải »


Câu 23:

Giá trị của n bằng bao nhiêu, biết \[\frac{5}{{C_5^n}} - \frac{2}{{C_6^n}} = \frac{{14}}{{C_7^n}}\]

A. n = 2 hoặc n = 4;
B. n = 5;
C. n = 4;
D. n = 3.

Xem lời giải »


Câu 24:

Hệ số của x2 trong khai triển (2 – 3x)3 là k. Nhận xét nào sau đây đúng về k ?
A. k là một số tự nhiên;
B. k là một số nguyên âm;
C. k là một số nguyên dương;
D. k = 0.

Xem lời giải »


Câu 25:

Cho đa giác đều n đỉnh, n \( \in \) ℕ; n ≥ 3. Tìm giá trị của n biết rằng đa giác đã cho có 135 đường chéo.

A. 15;
B. 27;
C. 8;
D. 18.

Xem lời giải »


Câu 26:

Trong không gian cho 2n điểm phân biệt n \( \in \) ℕ; n ≥ 3, trong đó không có \(3\) điểm nào thẳng hàng và trong 2n điểm đó có đúng n điểm cùng nằm trên mặt phẳng. Biết rằng có đúng 505 mặt phẳng phân biệt được tạo thành từ 2n điểm đã cho. Tìm n?

A. n = 9;
B. n = 7;
C. Không có n thỏa mãn;
D. n = 8.

Xem lời giải »


Câu 27:

Cho k, n là các số nguyên dương, k ≤ n. Trong các phát biểu sau, phát biểu nào sai?

A. \(A_n^k = n\left( {n - 1} \right)...\left( {n - k + 1} \right)\);
B. Pn = n(n – 1)(n – 2)...2.1;
C. Pn = n!;
D. \(A_n^k = \frac{{n!}}{{k!}}\).

Xem lời giải »


Câu 28:

Trong khai triển (x + 2y)5 số hạng chứa x2y3 là:

A. 80x2y3;
B. 40x2y3;
C. 80;
D. 10.

Xem lời giải »


Câu 29:

Trong khai triển nhị thức (2a + 1)5 ba số hạng đầu là:
A. 32a5 + 40a4 + 10a3;
B. 80a5 + 80a4 + 40a3;
C. 32a5 + 80a4 + 40a3;
D. 32a5 + 80a4 + 80a3.

Xem lời giải »


Câu 30:

Từ các chữ số 0; 1; 2; 3; 5; 8 có thể lập được bao nhiêu số tự nhiên chẵn có ba chữ số đôi một khác nhau và phải có mặt chữ số 2.
A. 36;
B. 21;

C. 120;

D. 144.

Xem lời giải »


Câu 1:

Số các hoán vị của n phần tử là:

A. n;
B. n + 1;
C. n – 1;
D. n!.

Xem lời giải »


Câu 2:

Một lớp có 31 học sinh nam và 16 học sinh nữ. Có bao nhiêu cách chọn một học sinh làm lớp trưởng của lớp.

A. 31;
B. 16;
C. 47;
D. 15.

Xem lời giải »


Câu 3:

Tổ hợp chập k của n phần tử với 1 ≤ k ≤ n là:

A.\(C_n^k\);
B.\(C_k^n\);
C.\(A_n^k\);
D. \(A_k^n\).

Xem lời giải »


Câu 4:

Bạn An dự định mua quà sinh nhật cho mẹ là một dây chuyền. Có ba kiểu mặt dây chuyền là: hình cỏ bốn lá, hình trái tim và hình giọt nước; có 2 loại dây là dạng xoắn, dạng chỉ. Hỏi bạn An có mấy cách chọn dây chuyền tặng mẹ.

A. 3;
B. 2;
C. 5;
D. 6.

Xem lời giải »


Câu 5:

Cho tập A có n phần tử (n ℕ, n ≥ 2), k là số nguyên thỏa mãn 1 ≤ k ≤ n. Số các chỉnh hợp chập k của n phần tử trên là:

A. n.k;
B. n.(n – 1).(n – 2)…(n – k + 1);
C.\(\frac{n}{k}\);
D.\(\frac{k}{n}\).

Xem lời giải »


Câu 6:

Cho tập A gồm 5 phần tử. Số tập con có 3 phần tử của A là:

A. 5;
B. 10;
C. 15;
D. 20.

Xem lời giải »


Câu 7:

Cho biểu thức (a + b)n , với n = 4 ta có khai triển là:

A. (a + b)4 = \(C_4^0{a^4} + C_4^1{a^3}{b^1} + C_4^2{a^2}.{b^2} + C_4^3a.{b^3} + C_4^4.{b^4}\);
B. (a + b)4 = \(C_4^0{a^4} - C_4^1{a^3}{b^1} - C_4^2{a^2}.{b^2} - C_4^3a.{b^3} - C_4^4.{b^4}\);
C. (a + b)4 = \(C_4^0{a^4} - C_4^1{a^3}{b^1} + C_4^2{a^2}.{b^2} - C_4^3a.{b^3} + C_4^4.{b^4}\);
D. (a + b)4 = \( - C_4^0{a^4} - C_4^1{a^3}{b^1} - C_4^2{a^2}.{b^2} - C_4^3a.{b^3} - C_4^4.{b^4}\).

Xem lời giải »


Câu 1:

Một tổ có 8 học sinh trong đó có 1 bạn tên Cường và một bạn tên Nam. Hỏi số cách sắp xếp 8 học sinh đó thành một hàng sao cho Cường đứng đầu hàng và Nam đứng cuối hàng?

A. 120;
B. 360;
C. 720;
D. 960.

Xem lời giải »


Câu 2:

Có bao nhiêu cách xếp 5 người ngồi vào một dãy ghế gồm có 6 chiếc ghế, biết mỗi người ngồi vào một ghế.
A. 30;
B. 11;
C. 38;
D. 720.

Xem lời giải »


Câu 3:

Cho các số 0; 1; 2; 3; 4. Lập được bao nhiêu số có bốn chữ số khác nhau từ các số đã cho.
A. 32;
B. 120;
C. 60;
D. 96.

Xem lời giải »


Câu 4:

Có 10 lớp khối 10, mỗi lớp cử 1 bạn nam và 1 bạn nữ đi tham gia đại hội Đoàn trường. Trong kỳ đại hội, cán bộ đoàn chọn một bạn nam và một bạn nữ lên phát biểu. Hỏi có tổng số bao nhiêu cách chọn?
A. 10;
B. 20;
C. 100;
D. 50.

Xem lời giải »


Câu 5:

Có 6 bông hoa hồng, 5 bông hoa cúc và 6 bông hướng dương (các bông hoa xem nhưu đôi một khác nhau). Có bao nhiêu cách lấy ra 3 bông hoa mà 3 bông hoa đó cùng loại.

A. 50 cách;
B. 100 cách;
C. 120 cách;
D. 150 cách.

Xem lời giải »


Câu 6:

Một cái hộp gồm có 10 bóng xanh và 8 bóng đỏ (các quả bóng đôi một khác nhau). Chọn trong hộp ra hai quả bóng. Có bao nhiêu cách để chọn được hai quả bóng khác màu.
A. 18;
B. 80;
C. 40;
D. 20.

Xem lời giải »


Câu 7:

Xét khai triển của \({\left( {2x + \frac{1}{2}} \right)^4}\). Gọi a là hệ số của x2 và b là hệ số của x trong khai triển. Tổng a + b là:

A. 5;
B. 6;
C. 7;
D. 8.

Xem lời giải »


Câu 8:

Tìm hệ số của x2 trong khai triển \({\left( {3x - \frac{1}{{3{x^2}}}} \right)^5}\).

A. 135;

B. 120;

C. – 135;
D. – 130.

Xem lời giải »


Câu 1:

Trong tủ sách có 10 cuốn tiểu thuyết; 8 cuốn truyện tranh và 6 cuốn tài liệu văn học. Hỏi có bao nhiêu cách chọn 2 cuốn sách sao cho hai cuốn sách đó khác nhau về thể loại.

A. 230 400;
B. 60;
C. 48;
D. 188.

Xem lời giải »


Câu 2:

Cho số tự nhiên n thỏa mãn \(C_n^2 + A_n^2 = 9n.\) Mệnh đề nào sau đây đúng?

A. n chia hết cho 5;
B. n chia hết cho 3;
C. n chia hết cho 7;
D. n chia hết cho 2.

Xem lời giải »


Câu 3:

Rút gọn biểu thức \(M = \frac{{A_n^6 + A_n^5}}{{A_n^4}}\) với n ℕ, n ≥ 6 ta thu được kết quả là:

A. n2 – 1;
B. n2 + 1;
C. (n + 4)2;
D. (n – 4)2.

Xem lời giải »


Câu 4:

Tìm hệ số của x5 trong khai triển (1 + x + x2 + x3)5.

A. 50;
B. 100;
C. 101;
D. 200.

Xem lời giải »


Câu 5:

Cho n > 2 là số nguyên dương thỏa mãn \(3C_n^2 + 2A_n^2 = 3{n^2} - 5.\) Số hạng không chứa x trong khai triển \({\left( {2{x^3} - \frac{3}{{{x^2}}}} \right)^n},x \ne 0.\)

A. – 1 080;
B. 1 080;
C. 1 008;
D. – 1 008.

Xem lời giải »


Xem thêm bài tập trắc nghiệm Toán lớp 10 Cánh diều có đáp án hay khác: