Cho biểu thức P = căn bậc hai của ( x^2 - 3)^2 + 12x^2/x^2 + căn bậc hai của ( x + 2)^2 - 8x a) Rút gọn P. b) Tìm giá trị nguyên của x để P ∈ ℤ.
Câu hỏi:
Cho biểu thức \(P = \sqrt {\frac{{{{\left( {{x^2} - 3} \right)}^2} + 12{{\rm{x}}^2}}}{{{x^2}}}} + \sqrt {{{\left( {x + 2} \right)}^2} - 8{\rm{x}}} \)
a) Rút gọn P.
b) Tìm giá trị nguyên của x để P ∈ ℤ.
Trả lời:
Lời giải
a) Điều kiện xác định x ≠ 0
Ta có:
\(P = \sqrt {\frac{{{{\left( {{x^2} - 3} \right)}^2} + 12{{\rm{x}}^2}}}{{{x^2}}}} + \sqrt {{{\left( {x + 2} \right)}^2} - 8{\rm{x}}} \)
b) Với x ≠ 0, ta có: \(P \in \mathbb{Z} \Leftrightarrow \left| {\frac{{{x^2}}}{x} + \frac{3}{x}} \right| + \left| {x - 2} \right| \in \mathbb{Z}\)
\( \Leftrightarrow \frac{3}{x} \in \mathbb{Z}\) ⇔ 3 ⋮ x
⇔ x ∈ Ư(3) = {1; 3; –1; –3}
Vậy x ∈ {1; 3; –1; –3} thì P ∈ Z.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Nhân ngày 20 tháng 10 một cửa hàng thời trang giảm 30% giá niêm yết cho tất cả sản phẩm. Đặc biệt nếu khách hàng nào có thẻ khách hàng thân thiện của cửa hàng thì được tặng thêm một voucher trị giá bằng 10% số tiền thanh toán tại quầy Thu Ngân:
a) Chị Hoa không có thẻ khách hàng thân thiện của cửa hàng, chị mua một chiếc váy có giá niêm yết là 1 050 000 đồng. Hỏi chị Hoa phải trả bao nhiêu tiền cho chiếc váy đó?
b) Cô Hà có thẻ khách hàng thân thiện, cô mua 1 chiếc túi xách và nhận được một voucher trị giá 91 000 đồng. Hỏi giá niêm yết ban đầu của túi xách là bao nhiêu?
Xem lời giải »
Câu 2:
Tam giác ABC có BC = 21 cm, CA = 17 cm, AB = 10 cm. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC
Xem lời giải »
Câu 3:
Tìm tất cả các số nguyên x, y, z thỏa mãn 3x2 + 6y2 + 2z2 + 3y2z2 – 18x = 6.
Xem lời giải »
Câu 4:
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu H trên AB, AC. Chứng minh:
a) \(\frac{{FB}}{{FC}} = \frac{{A{B^3}}}{{A{C^3}}}\);
b) BC2 = 3AH2 + BE2 + CF2;
c) \(BE\sqrt {CH} + CF\sqrt {BH} = AH\sqrt {BC} \).
Xem lời giải »
Câu 5:
Giải phương trình: \(\sqrt 3 co{s^2}x - {\mathop{\rm s}\nolimits} {\rm{inxcosx + si}}{{\rm{n}}^2}x = 1\).
Xem lời giải »
Câu 6:
Tìm các số nguyên n để phân số \(\frac{3}{{n + 1}}\) có giá trị là một số nguyên.
Xem lời giải »
Câu 7:
Tìm n thuộc Z sao cho phân số \[{\rm{A}} = \frac{n}{{n - 1}}\] là một số nguyên.
Xem lời giải »
Câu 8:
Cho hàm số y = x4 – 2mx2 + 3m + 2. Tất cả các giá trị của m để đồ thị hàm số có 3 điểm cực trị tạo thành tam giác đều là:
Xem lời giải »