X

Các dạng bài tập Toán lớp 12

95 bài tập trắc nghiệm tổng hợp môn Toán 2024 cực hay có đáp án (Phần 82)


Haylamdo biên soạn và sưu tầm 95 bài tập trắc nghiệm tổng hợp môn Toán có lời giải chi tiết giúp học sinh lớp 12 biết cách làm bài tập & ôn luyện trắc nghiệm môn Toán.

95 bài tập trắc nghiệm tổng hợp môn Toán 2024 cực hay có đáp án (Phần 82)

Câu 1:

Cho tam giác ABC nhọn. Đường tròn tâm O đường kính BC cắt AB ở M và cắt AC ở N. Gọi H là giao điểm của BN và CM.

a) Chứng minh AH vuông góc với BC.

b) Gọi E là trung điểm AH. Chứng minh bốn điểm A, M, H, E cùng nằm trên một đường tròn và EM là tiếp tuyến của đường tròn (O).

Xem lời giải »


Câu 2:

Tính giá trị biểu thức: \(\frac{{2\sqrt {15} - 2\sqrt {10} + \sqrt 6 - 3}}{{2\sqrt 5 - 2\sqrt {10} - \sqrt 3 + \sqrt 6 }}\).

Xem lời giải »


Câu 3:

Cho nửa đường tròn (O). Đường kính AB = 6 cm. Kẻ các tiếp tuyến Ax, By cùng phía đối với nửa đường tròn đối với AB. Gọi C là một điểm thuộc tia Ax, kẻ tiếp tuyến CE với nửa đường tròn (E là tiếp điểm), CE cắt By tại D.

a) Chứng minh \[\widehat {COD} = 90^\circ \].

b) Chứng minh AEB và COD đồng dạng.

c) Gọi I là trung điểm của CD. Vẽ đường tròn (I) bán kính IC. Chứng minh rằng AB là tiếp tuyến của (I).

Xem lời giải »


Câu 4:

Cho tam giác ABC vuông tại A, M là trung điểm của BC. D, E lần lượt là hình chiếu của M trên AB và AC.

a) Tứ giác ADME là hình gì, tại sao?

b) Chứng minh DE = \(\frac{1}{2}BC\).

c) Gọi P là trung điểm của BM, Q là trung điểm của MC, chứng minh tứ giác DPQE là hình bình hành. Từ đó chứng minh: tâm đối xứng của hình bình hành DPQE nằm trên đoạn AM.

d) Tam giác vuông ABC ban đầu cần thêm điều kiện gì để hình bình hành DPQE là hình chữ nhật?

Xem lời giải »


Câu 5:

Cho tam giác ABC có A(1; 2), B (–3; –1), và C (3; –4). Tìm điều kiện của tham số m để điểm M\(\left( {m;\frac{{m - 5}}{3}} \right)\) nằm bên trong tam giác ABC.

Xem lời giải »


Câu 6:

Chứng minh rằng n(n + 13) chia hết cho 2 với mọi số tự nhiên n.

Xem lời giải »


Câu 7:

Chứng minh với mọi tam giác ABC ta có:

cos2A + cos2B + cos2C = –1 – 4cosA.cosB.cosC.

Xem lời giải »


Câu 8:

Cho biểu thức B = \(\frac{{{a^2} - 3a\sqrt a + 2}}{{a - 3\sqrt a }}\). Tìm các số nguyên a để B nhận giá trị nguyên.

Xem lời giải »


Câu 9:

Điền số thích hợp vào chỗ chấm

a) 2,5 tấn = …kg

5,4 tấn = …kg

1,2 kg = …g

3,2 yến = ...kg

0,96 tấn = ...kg

3,72 tấn = ...tạ

0,12 kg = …g

2,2 hg = ...dag

5,4 tạ = …yến

3,39 tấn = …yến

0,5 yến = ....kg

2,2 hg = …g

b) 4 987m2 = …dam2...m2

320 060 dam2 = ...km2…m2

125 600 m2 = ...hm2…dam2

9 028 007 m2 = …km2… m2

c) 5m2 16dm2 = ….m2

7m2 5cm2 = ...m2

68m2 = …m2

693000 m2 = …ha

0,235 km2 = …ha

25m2 7dm2 = ….m2

15km2 68hm2 = ….km2

2002cm2 = ….m2

500 m2 = …ha

0,058 km2 = …ha

9km2 6dam2 = …km2

75m2 7dm2 = …m2

68063 m2 = … ha

400 ha = ….km2

Xem lời giải »


Câu 10:

Có 7 quả cam, chia đều cho 10 người. Làm thế nào để chia được mà không phải cắt bất kì quả cam nào thành 10 phần bằng nhau?

Xem lời giải »


Câu 11:

Không thực hiện tính tổng, chứng minh rằng A = 2 + 22 + 23 + … + 220 chia hết cho 5.

Xem lời giải »


Câu 12:

Cho hình bình hành MNPQ với O là giao điểm của 2 đường chéo và thỏa mãn MN = 6cm, NP =5cm, OM = 2cm. Tính độ dài của PQ, MQ, MP?

Xem lời giải »


Câu 13:

Độ dài đo được trên thực tế giữa 2 điểm A và B có khoảng cách là 150 km, trên tờ bản đồ có tỉ lệ 1: 1 000 000, vậy 2 điểm cách nhau bao nhiêu cm?

Xem lời giải »


Câu 14:

Biết đồ thị hàm số y = ax2 + bx + c đi qua điểm A(2; 1) và có đỉnh I(1; –1). Tính giá trị biểu thức T = a3 + b2 – 2c.

Xem lời giải »


Câu 15:

Rút gọn: M = sin(x – y)cosy + cos(x – y)siny.

Xem lời giải »


Câu 16:

Số học sinh khối 6 của trường khi xếp hàng 10, hàng 12, hàng 15 đều dư 3 học sinh. Hỏi số học sinh khối 6 của trường đó là bao nhiêu? Biết rằng số học sinh trong khoảng từ 350 đến 400 học sinh.

Xem lời giải »


Câu 17:

Cho hình vẽ. Chứng minh rằng:

a) ∆AOD = ∆COB.

b) AD // BC.

Cho hình vẽ. Chứng minh rằng: a) tam giác AOD = tam giác COB (ảnh 1)

Xem lời giải »


Câu 18:

Cho hình bình hành ABCD hai đường chéo không vuông góc với nhau. Vẽ điểm E đối xứng với A qua BD. Chứng minh rằng 4 điểm B, C, E, D là 4 đỉnh của hình thang cân.

Xem lời giải »


Câu 19:

Tìm tập giá trị T của hàm số y = sin2x.

Xem lời giải »


Câu 20:

Một quyển sách được ghi số trang bắt đầu từ 3 và trang cuối cùng là 139. Do quyển sách đã dùng lâu nên bị rơi mất 2 tờ trang có 2 chữ số và 5 tờ trang có 3 chữ số. Hỏi quyển sách đó còn bao nhiêu tờ?

Xem lời giải »


Câu 21:

Cho tam giác ABC. Xác định điểm I sao cho vectơ \(2\overrightarrow {IA} + 3\overrightarrow {IB} = \overrightarrow {IC} \).

Xem lời giải »


Câu 22:

Cho hình bình hành ABCD. E, F lần lượt là trung điểm của AB và CD. Tứ giác DEBF là hình gì? Vì sao?

Cho hình bình hành ABCD. E, F lần lượt là trung điểm của AB và CD.

a) Tứ giác DEBF là hình gì? Vì sao?

b) Chứng minh 3 đường thẳng AC, BD, EF đồng qui.

c) Gọi giao điểm của AC với DE và BF theo thứ tự là M, N. Chứng minh tứ giác EMFN là hình bình hành.

Xem lời giải »


Câu 23:

Cho 2 đường thẳng d1: y = 4x + m – 1, d2: y = \(\frac{4}{3}\)x + 15 – 3m.

a) Tìm m để d1, d2 cắt nhau tại điểm C trên trục tung.

b) Với m vừa tìm được, hãy tìm giao điểm A, B của d1, d2 với Ox.

Xem lời giải »


Câu 24:

Cho bốn số nguyên dương phân biệt sao cho tổng của mỗi hai số chia hết cho 2 và tổng của mỗi ba số chia hết cho 3. Tìm giá trị nhỏ nhất của tổng bốn số này?

Xem lời giải »


Câu 25:

Cho ∆ABC, AQ, BK, CI là 3 đường cao, H là trực tâm.

a. Chứng minh: A, K, B, Q thuộc 1 đường tròn. Xác định tâm của đường tròn.

b. Chứng minh: A, I, H, K thuộc 1 đường tròn. Xác định tâm của đường tròn.

Xem lời giải »


Câu 26:

Cho nửa đường tròn (O) đường kính AB. Lấy điểm D trên bán kính OB (khác O, B). Gọi H là trung điểm của AD. Đường vuông góc tại H với AB cắt nửa đường tròn tại C. Đường tròn tâm I đường kính BD cắt tiếp tuyến BC tại E.

a) Tứ giác ACED là hình gì?

b) Chứng minh tam giác CEH cân tại H và HE là tiếp tuyến của (I).

Xem lời giải »


Câu 27:

Cho tam giác ABC vuông tại A, đường cao AH, M là điểm bất kì thuộc cạnh BC. Kẻ MI vuông góc với AC (I thuộc AC), kẻ MK vuông góc với AB (K AD).

a) Chứng minh KI = MA.

b) Gọi O là giao điểm của AM và KI. Chứng minh \(\widehat {IHK} = 90^\circ \).

Xem lời giải »


Câu 28:

Cho đường tròn (O; R) và hai bán kính OA, OB. Trên các bán kính OA, OB lần lượt là các điểm M, N sao cho OM = ON. Vẽ dây CD qua M và N (M nằm giữa C và N).

1. Chứng minh rằng CM = DN.

2. Giả sử \(\widehat {AOB} = 90^\circ \), hãy tính OM, ON theo R sao cho CM = MN = ND.

Xem lời giải »


Câu 29:

Cho tam giác ABC. Vẽ các tam giác đều ABM, ACN phía ngoài tam giác ABC. Gọi D, E, F lần lượt là trung điểm của BC, AM, AN. Chứng minh tam giác DEF đều.

Xem lời giải »


Câu 30:

Cho a, b, c là 3 cạnh của 1 tam giác.

Chứng minh rằng A = \(\frac{a}{{b + c - a}} + \frac{b}{{a + c - b}} + \frac{c}{{a + b - c}} \ge 3\).

Xem lời giải »


Câu 31:

Tìm các số nguyên dương x, y, z thỏa mãn x + y + z = xyz.

Xem lời giải »


Câu 32:

Tìm m để phương trình x2 + mx + m – 1 = 0 có hai nghiệm lớn hơn m.

Xem lời giải »


Câu 33:

Quan sát hình vẽ sau. Giải thích vì sao m song song với n?

Quan sát hình vẽ sau. Giải thích vì sao m song song với n (ảnh 1)

Xem lời giải »


Câu 34:

Cho đường tròn (O) đường kính AB. Đường thẳng d tiếp xúc với (O) tại A. Gọi I là một điểm cố định trên đoạn thẳng AB. Gọi DE là dây cung thay đổi của (O) luôn đi qua I. Gọi BD, BE cắt d lần lượt tại M, N.

1) Chứng minh rằng tứ giác DENM là tứ giác nội tiếp.

2) Chứng minh rằng tích AM. AN không đổi.

3) Chứng minh rằng tâm đường tròn ngoại tiếp tứ giác DENM thuộc một đường thẳng cố định.

Xem lời giải »


Câu 35:

Cho hình thang ABCD (AD // BC) có \(\widehat A - \widehat B = 20^\circ ,\widehat D = 2\widehat C\).

1) Tính \(\widehat A + \widehat B\).

2) Chứng minh \(\widehat A + \widehat B = \widehat D + \widehat C\).

3) Tính số đo các góc của hình thang.

Xem lời giải »


Câu 36:

Tìm số nguyên tố p sao cho 2p + 1 chia hết cho p.

Xem lời giải »


Câu 37:

Cho tam giác nhọn ABC, AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC. Trên tia đối của MH lấy điểm K sao cho MH = MK.

a, Chứng minh: BHCK là hình bình hành.

b, Chứng minh: BK vuông góc AB.

c, Chứng minh: tâm giác MEF cân.

d, CQ vuông góc BK tại Q. Chứng minh: EF vuông góc EQ.

Xem lời giải »


Câu 38:

Cho nửa đường tròn tâm O, đường kính AB. Kẻ các tiếp tuyến Ax, By cùng phía với nửa đường tròn đối với AB. Từ điểm M trên nửa đường tròn kẻ tiếp tuyến thứ 3 với đường tròn, nó cắt Ax , By tại C, D. Tiếp tuyến của nửa đường tròn tại E cắt Ax, By theo thứ tự ở C và D.

a) Chứng minh rằng: tam giác COB là tam giác vuông.

b) Chứng minh MC.MD = OM2.

Xem lời giải »


Câu 39:

Cho phương trình x (m  3)x 5 = 0, m là tham số. Tìm m để phương trình có hai nghiệm phân biệt x1, x2 là các số nguyên.

Xem lời giải »


Câu 40:

Tìm các số tự nhiên x sao cho 14 chia hết cho 2x + 1.

Xem lời giải »


Câu 41:

Cho A = 2 + 22 + 23 + … + 260. Hãy thu gọn tổng A.

Xem lời giải »


Câu 42:

Cho hai tập hợp khác rỗng A = [ m – 1; 5) và B =[–3; 2m + 1]. Tìm m để A B.

Xem lời giải »


Câu 43:

tổng A = 8 + 12 + x với x thuộc ℕ. Tìm x để:

a) A chia hết cho 2.

b) A không chia hết cho 2.

Xem lời giải »


Câu 44:

Điền chữ số thích hợp vào dấu * để được số M = \(\overline {37*} \) thỏa mãn điều kiện:

a) M chia hết cho 3;

b) M chia hết cho 9;

c) M chia hết cho 3 nhưng không chia hết 9.

Xem lời giải »


Câu 45:

Thực hiện phép tính \(\left( {1 - \frac{1}{{1 + 2}}} \right)\left( {1 - \frac{1}{{1 + 2 + 3}}} \right)...\left( {1 - \frac{1}{{1 + 2 + 3 + ... + 2006}}} \right)\).

Xem lời giải »


Câu 46:

Cho phương trình: x2 – 2mx + m2 – 4 = 0.

a) Chứng minh rằng phương trình luôn có 2 nghiệm với mọi giá trị của m.

b) Tìm m để phương trình có 2 nghiệm phân biệt x1; x2 sao cho 3x1 + 2x2 = 7.

Xem lời giải »


Câu 47:

Biến đổi tổng thành tích A = sina + sinb + sin(a + b).

Xem lời giải »


Câu 48:

Cho số tự nhiên \(\overline {ab} \) bằng ba lần tích các chữ số của nó.

a) Chứng minh rằng b chia hết cho a.

b) Gỉa sử b = ka (k thuộc ℕ) chứng minh rằng k là ước của 10.

c) Tìm các số \(\overline {ab} \) nói trên.

Xem lời giải »


Câu 49:

Cho tam giác ABC nhọn (AB < AC) có các đường cao BD và CE.

a, Cho góc A = 60 độ và AC = 12cm, tính AE và CE.

b, Tia DE cắt BC ở F. Chứng minh tam giác ADE đồng dạng với tam giác ABC.

c, Chứng minh FB.FC = FE.FD.

Xem lời giải »


Câu 50:

Cho nửa đường tròn (O; R). Hai dây cung AB và CD song song với nhau có độ dài lần lượt là 32 cm và 24 cm và khoảng cách giữa 2 dây là 4 cm. Tính bán kính đường tròn.

Xem lời giải »


Câu 51:

Cho đường tròn (O) đường kính AB, E thuộc đoạn AO (E khác A, O và AE > EO). Gọi H là trung điểm của AE , kẻ dây CD vuông góc với AE tại H.

a) Tính góc \(\widehat {ACB}\)?

b) Tứ giác ACED là hình gì?

c) Gọi I là giao điểm của DE và BC. Chứng minh HI là tiếp tuyến của đường tròn đường kính EB?

Xem lời giải »


Câu 52:

Bác Hòa uốn một sợi dây thép thành móc treo đồ có dạng hình thang cân với độ dài đáy bé bằng 40cm, đáy lớn bằng 50cm, cạnh bên bằng 15cm, móc treo dài 10cm. Hỏi bác Hòa cần bao nhiên mét dây thép?

Xem lời giải »


Câu 53:

Chứng minh rằng 109 + 108 + 107 chia hết cho 222.

Xem lời giải »


Câu 54:

Một trường có 1055 học sinh. Trường tổ chức đi dã ngoại bằng xe buýt, một chiếc xe chở được 30 học sinh. Hỏi trường cần ít nhất bao nhiêu chiếc xe để chở hết học sinh của trường đi dã ngoại?

Xem lời giải »


Câu 55:

Cho tam giác ABC vuông tại A. M là trung điểm BC, D đối xứng với A qua M.

a) Chứng minh ABCD là hình chữ nhật.

b) Lấy E đối xứng với A qua C. O là trung điểm CD. Chứng minh B đối xứng với E qua O.

Xem lời giải »


Câu 56:

Cho tam giác ABC vuông cân tại A. Qua A vẽ đường thẳng d bất kỳ (d không cắt đoạn thẳng BC). Kẻ BH vuông góc với d, CK vuông góc với d (H, C thuộc d).

a) Chứng minh rằng BH = AK.

b) Gọi M là trung điểm của BC. Chứng minh: ΔBHM = ΔAKM.

c) Chứng minh ΔMHK vuông cân.

Xem lời giải »


Câu 57:

Cho tam giác ABC vuông tại A, AH là đường cao. Biết \(\frac{{AH}}{{AB}} = \frac{3}{5}\); AB = 15cm.

a) Tính HB, HC.

b) Gọi E, F lần lượt là hình chiếu của H lên AB, AC. Chứng minh: AH3 = BC.BE.CF.

Xem lời giải »


Câu 58:

Rút gọn biểu thức P = \[\left( {\frac{{15}}{{\sqrt 6 + 1}} + \frac{4}{{\sqrt 6 - 2}} - \frac{{12}}{{3 - \sqrt 6 }}} \right)\left( {\sqrt 6 + 11} \right)\].

Xem lời giải »


Câu 59:

Một hình vuông được ghép bởi 722 hình chữ nhật có kích thước 1cm × 2cm. Hỏi sau khi ghép như vậy thì tổng chu vi đã bị giảm đi bao nhiêu cm?

Xem lời giải »


Câu 60:

Tìm hai số biết số thứ nhất bằng số thứ hai. Biết rằng nếu bớt ở số thứ nhất đi 28 đơn vị và thêm vào số thứ hai là 35 đơn vị thì được tổng mới là 357.

Xem lời giải »


Câu 61:

Tìm hai số có hiệu là số bé nhất có hai chữ số chia hết cho 3 và tổng là số lớn nhất có hai chữ số chia hết cho 2.

Xem lời giải »


Câu 62:

Cho hình thang cân ABCD (AD // BC). Biết AB = 12cm, AC = 16cm, BC = 20 cm. Chứng minh 4 điểm A, B, C, D cùng thuộc một đường tròn. Tính bán kính của đường tròn đó.

Xem lời giải »


Câu 63:

Giải phương trình: \(\sqrt {{x^2} - 5x + 4} = \sqrt { - 2{x^2} - 3x + 12} \).

Xem lời giải »


Câu 64:

Một bạn học sinh thả diều ngoài đồng, cho biết đoạn dây diều từ tay bạn đến diều dài 130m và bạn đứng cách nơi diều được thả lên theo phương thẳng đứng là 50m. Tính độ cao của con diều so với mặt đất, biết tay bạn học sinh cách mặt đất 1,5m.

Xem lời giải »


Câu 65:

Tìm x biết: (x + 7) – 25 = 13.

Xem lời giải »


Câu 66:

Cho tứ giác ABCD có AB = AD, CB = CD, \(\widehat C = 60^\circ ;\widehat A = 100^\circ \).

a) Chứng minh AC là đường trung trực của BD.

b) Tính \(\widehat B,\widehat D\).

Xem lời giải »


Câu 67:

Lớp chuyên Toán có 13 học sinh chơi đá bóng, 22 học sinh bơi lội và 17 học sinh chơi cờ vua, trong số đó có 5 học sinh chơi đá bóng và bơi lội, 7 học sinh bơi lội và chơi cờ vua, 3 học sinh chơi cờ vua và đá bóng, đặt biệt có 4 học sinh đang đi giao lưu ở nước ngoài. Vậy lớp có bao nhiêu học sinh?

Xem lời giải »


Câu 68:

Bánh xe đạp có bán kính 50cm (kể cả lốp). Một người quay bánh xe 5 vòng quanh trục thì quãng đường đi được là bao nhiêu?

Xem lời giải »


Câu 69:

Giải phương trình: tan2x + cot2x = 1 + \({\cos ^2}\left( {3x + \frac{\pi }{4}} \right)\).

Xem lời giải »


Câu 70:

Cho C = 5 + 52 + … + 520. Chứng minh rằng C chia hết cho 5; 6; 13.

Xem lời giải »


Câu 71:

Một hình vuông chu vi 20cm, một hình chữ nhật có chiều rộng bằng cạnh hình vuông và có chu vi 26cm. Tìm diện tích hình chữ nhật.

Xem lời giải »


Câu 72:

Cho nửa đường tròn (O; R), đường kính AB. Vẽ các tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một mặt phẳng bờ AB). Gọi M là một điểm bất kì thuộc nửa đường tròn. Tiếp tuyến tại M cắt Ax, By theo thứ tự ở C và D. Chứng minh rằng đường tròn có đường kính CD tiếp xúc với AB.

Xem lời giải »


Câu 73:

Một giá sách có hai ngăn, số sách ở ngăn dưới bằng \(\frac{5}{6}\) số sách ở ngăn trên. Nếu ngăn dưới bớt đi 11 quyển thì số sách ngăn dưới bằng \(\frac{4}{7}\) số sách ngăn trên. Tính số sách giá trên.

Xem lời giải »


Câu 74:

Cho A = 2 + 22 + 23 + … + 260. Chứng minh rằng A chia hết cho 3; 5; 7.

Xem lời giải »


Câu 75:

Tìm các số nguyên n biết 3n – 1 chia hết cho n – 2.

Xem lời giải »


Câu 76:

Một em học sinh đứng ở mặt đất cách tháp ăng–ten 150m. Biết rằng em nhìn thấy đỉnh tháp ở góc 20° so với đường nằm ngang, khoảng cách từ mắt đến mặt đất bằng 1,5m. Hãy tính chiều cao của tháp.

Xem lời giải »


Câu 77:

Một người bán một tấm vải được lãi \(\frac{1}{5}\) giá mua. Nếu người đó bán được cao giá hơn 40 000 đồng nữa thì người đó lãi \(\frac{1}{5}\) giá bán. Hỏi giá mua tấm vải là bao nhiêu?

Xem lời giải »


Câu 78:

Cho C = 1 + 4 + 42 + 43 +… + 42021. Chứng minh C chia hết cho 21.

Xem lời giải »


Câu 79:

Cho tam giác ABC vuông tại A, đường cao AH, vẽ HE vuông góc AB, HF vuông góc AC. Gọi I là trung điểm BC.

a) Chứng minh EF = AH.

b) Chứng minh AI vuông góc EF.

c) Gọi M là trung điểm HB, N là trung điểm HC. Chứng minh EMNF là hình thang vuông.

Xem lời giải »


Câu 80:

Cho a và b thuộc ℕ. Chứng minh rằng 5a2 + 15ab – b2 chia hết cho 49 khi và chỉ khi 3a + b chia hết cho 7.

Xem lời giải »


Câu 81:

Cho hình vuông ABCD. Lấy M thuộc AB và N thuộc BC sao cho BN = BM. Gọi H là hình chiếu vuông góc của B lên CM. Chứng minh rằng \(\widehat {DHN}\) = 90°.

Xem lời giải »


Câu 82:

Cho B = 1 + 3 + 32 + 33 + … + 3101. Chứng minh rằng B chia hết cho 13.

Xem lời giải »


Câu 83:

Cho A = (2m – 1; m + 3) và B = (–4; 5). Tìm m sao cho A B.

Xem lời giải »


Câu 84:

Cho tam giác ABC nhọn, đường cao AH. Trên AH, AB, AC lần lượt lấy D, E, F sao cho \(\widehat {EDC}\) = \(\widehat {FDB}\)= 90° (E khác B). DE, DF cắt BC lần lượt tại M, N. Chứng minh: EF // BC.

Xem lời giải »


Câu 85:

Biết x,y là hai số nguyên dương thỏa mãn :3x2 – 4xy + 2y2 = 3. Tính giá trị của biểu thức M = x2022 + (y – 3)2022.

Xem lời giải »


Câu 86:

Cho \(A = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{{100}}\). Chứng minh rằng A không phải là số tự nhiên.

Xem lời giải »


Câu 87:

Bạn An kinh doanh hai mặt hàng handmade là vòng tay và vòng đeo cổ. Mỗi vòng tay làm trong 4 giờ, bán được 40 ngàn đồng. Mỗi vòng đeo cổ làm trong 6 giờ, bán được 80 ngàn đồng. Mỗi tuần bạn An bán được không quá 15 vòng tay và 4 vòng đeo cổ. Tính số giờ tối thiểu trong tuần An cần dùng để bán được ít nhất 400 ngàn đồng?

Xem lời giải »


Câu 88:

Cho hai đường tròn (O) và (O') tiếp xúc ngoài tại A. Một cát tuyến kẻ qua A cắt đường tròn (O) ở B, cắt đường tròn (O') ở C. Kẻ các đường kính BD và CE của hai đường tròn (O) và (O'). Chứng minh \(\widehat {ADB} = \widehat {AEC}\)

Xem lời giải »


Câu 89:

Cho hình chữ nhật ABCD. Qua B kẻ đường thẳng vuông góc với đường chéo AC tại H. Gọi E, F, G theo thứ tự là trung điểm của AH, BH, CD.

a, Chứng minh tứ giác EFCG là hình bình hành.

b, Chứng minh \(\widehat {BEG} = 90^\circ \).

c, Cho biết BH = 4 cm, \(\widehat {BAC} = 30^\circ \). Tính SABCD; SEFCG.

Xem lời giải »


Câu 90:

Chứng minh rằng biểu thức sau luôn dương với mọi giá trị của x: x2 + x + 1.

Xem lời giải »


Câu 91:

Cho tam giác ABC. Chứng minh điều kiện cần và đủ để ABC cân là

\(\frac{1}{2}\left( {\tan A + \tan B} \right) = \frac{{\sin A + \sin B}}{{\cos A + \cos B}}\).

Xem lời giải »


Câu 92:

Tìm số tự nhiên a bé hơn hoặc bằng 200. Biết rằng khi chia a cho số tự nhiên b thì được thương là 4 và dư 35.

Xem lời giải »


Câu 93:

Cho tam giác ABC vuông tại A, đường cao AH. Biết BH = 9cm; CH = 16cm.

Tính các cạnh còn lại.

Xem lời giải »


Câu 94:

Cho điểm O trên đường thẳng xy. Trong một nửa mặt phẳng bờ xy ta dựng \(\widehat {zOt}\)= 90 độ. Trên Oz lấy điểm A và Ot lấy điểm B sao cho OA = OB. Kẻ AM và BN vuông góc với xy. Chứng minh rằng:
a) ∆OAM = ∆BON.
b) MN = AM + BN.

Xem lời giải »


Câu 95:

Cho tam giác ABC đều cạnh a. Lấy hai điểm M, N thoả mãn \(\overrightarrow {BC} = 3\overrightarrow {BM} ,\overrightarrow {AB} = 3\overrightarrow {AN} \). Gọi E là giao điểm của AM và CN. Chứng minh EB vuông góc với EC.

Xem lời giải »


div class="w3-clear nextprev"> ❮ Bài trước Bài sau ❯