134 bài tập trắc nghiệm tổng hợp môn Toán 2024 cực hay có đáp án ( Phần 63)
Haylamdo biên soạn và sưu tầm 134 bài tập trắc nghiệm tổng hợp môn Toán có lời giải chi tiết giúp học sinh lớp 12 biết cách làm bài tập & ôn luyện trắc nghiệm môn Toán.
134 bài tập trắc nghiệm tổng hợp môn Toán 2024 cực hay có đáp án ( Phần 63)
Câu 1:
Cho hình bình hành ABCD. Chứng minh rằng \(\overrightarrow {AB} + 2\overrightarrow {AC} + \overrightarrow {AD} = 3\overrightarrow {AC} \).
Câu 2:
Cho biểu thức \(A = 1 + \left( {\frac{{2a + \sqrt a - 1}}{{1 - a}} - \frac{{2a\sqrt a - \sqrt a + a}}{{1 - a\sqrt a }}} \right).\frac{{a - \sqrt a }}{{2\sqrt a - 1}}\). Rút gọn A.
Câu 4:
Rút gọn phân thức: \(\frac{{\left( {{x^2} + 3x + 2} \right)\left( {{x^2} - 25} \right)}}{{{x^2} + 7x + 10}}\).
Câu 6:
Cho đường tròn (O). Từ điểm M nằm ngoài đường tròn (O), vẽ hai tiếp tuyến ME, MF. Biết OE = 3 cm, OM = 5 cm.
a) Tính độ dài EF.
b) Tính chu vi và diện tích tam giác MEF.
Câu 7:
Tam giác ABC có a = 5, b = 4, c = 3. Lấy điểm D đối xứng B qua C. Độ dài đoạn AD.
Câu 9:
Cho \(P = \left( {\frac{1}{{\sqrt x }} + \frac{{\sqrt x }}{{\sqrt x + 1}}} \right):\frac{{\sqrt x }}{{x + \sqrt x }}\).
a) Rút gọn P.
b) Tìm giá trị của P khi x = 4.
c) Tìm x để \(P = \frac{{13}}{3}\).
Câu 10:
Gọi x0 là nghiệm âm lớn nhất của \[\sin 9x + \sqrt 3 \cos 7x = \sin 7x + \sqrt 3 \cos 9x\]. Tìm x0?
Câu 11:
Hai người đi xe từ A đến C. Người thứ nhất đi theo đường từ A đến B rồi từ B đến C. Người thứ hai đi thẳng từ A đến C. Cả hai đều về đích cùng lúc. Tính quãng đường và độ dịch chuyển của người thứ nhất và người thứ hai, so sánh và nhận xét kết quả biết ABC tạo thành tam giác vuông 1 tam giác vuông.
Câu 12:
Từ một tổ gồm 5 bạn nam và 4 bạn nữ. chọn ngẫu nhiên 5 bạn xếp thành 1 hàng ngang. tính xác suất sao cho trong những cách xếp trên có đúng 3 bạn nam.
Câu 14:
Tìm 1 số tự nhiên có 4 chữ số biết rằng khi viết thêm chữ số 7 vào bên phải số đó thì được số lớn hơn số phải tìm 11212 đơn vị.
Câu 16:
Một vận động viên bơi về phía Bắc với vận tốc 1,7 m/s. Nước sông chảy với vận tốc 1 m/s về phía Đông. Tính độ lớn và hướng vận tốc tổng hợp của vận động viên?
Câu 17:
Xét tính chẵn, lẻ của hàm số y = f(x) = \(\sin \left( {2x + \frac{{9\pi }}{2}} \right)\).
Câu 19:
Xếp 5 người A, B, C, D, E ngẫu nhiên vào 1 chiếc ghế có 5 chỗ ngồi. Tính xác suất để A ngồi chính giữa B và C.
Câu 22:
Tìm GTLN, GTNN của hàm số \(y = \frac{{2\sin x + \cos x + 3}}{{2\cos x - \sin x + 4}}\).
Câu 25:
Cho biểu thức: \(P = \left( {\frac{{x - y}}{{\sqrt x - \sqrt y }} + \frac{{\sqrt {{x^3}} - \sqrt {{y^3}} }}{{y - x}}} \right):\frac{{{{\left( {\sqrt x - \sqrt y } \right)}^2} + \sqrt {xy} }}{{\sqrt x + \sqrt y }}\) với x ≥ 0, y ≥ 0, x ≠ y.
a) Rút gọn A.
b) Chứng minh rằng A ≥ 0.
Câu 26:
Câu 27:
Cho hàm số y = \(\frac{{x + 1}}{{x - 3}}\) có đồ thị (C) và các đường thẳng d1: y = 2x, d2: y = 2x – 2, d3: y = 3x + 3, d4: y = –x + 3. Hỏi có bao nhiêu đường thẳng trong 4 đường thẳng d1, d2, d3, d4 đi qua giao điểm của (C) và trục hoành.
Câu 28:
Cho một số tự nhiên có 3 chữ số. Biết rằng thêm chữ số 3 vào bên phải số đó thì số đó tăng thêm 2892 đơn vị. Tổng các chữ số của số đó là?
Câu 29:
Cho nửa đường tròn (O) đường kính AB, tiếp tuyến Ax. Gọi C là một điểm trên nửa đường tròn. Tia phân giác của \(\widehat {CAx}\) cắt nửa đường tròn ở E, AE và BC cắt nhau ở K. AC cắt BE ở I.
a) Tam giác ABK là tam giác gì? Vì sao?
b) Chứng minh KI // Ax.
c) Chứng minh OE // BC.
Câu 30:
Cho số A = 1.2.3.4…100
số B = 1000....00000.
Hỏi số B có nhiều nhất là bao nhiêu chữ số 0 biết A chia hết cho B.
Câu 31:
Cho tam giác ABC vuông cân tại A,đường trung tuyến BM. Gọi D là hình chiếu của C trên BM, H là hình của D trên AC. Chứng minh rằng AH = 3HD.
Câu 32:
Cho đường tròn (O), đường kính BC = 2R, điểm A nằm ngoài đường tròn sao cho tam giác ABC nhọn. Từ A kẻ 2 tiếp tuyến AM, AN với đường tròn (O). Gọi H là trực tâm của tam giác ABC, F là giao điểm của AH và BC. Chứng minh rằng:
a) 5 điểm A, O, M, N, F cùng nằm trên 1 đường tròn.
b) 3 điểm M, N, H thẳng hàng.
c) HA . HF = R2 – OH2.
Câu 33:
Có 5 người trên 7 toa tàu được đánh số 1, 2, 3, 4, 5, 6, 7. Tính xác suất để 5 người lên 5 toa tàu khác nhau?
Câu 34:
Giải phương trình: \(\sqrt 3 \cos \left( {x + \frac{\pi }{2}} \right) + \sin \left( {x - \frac{\pi }{2}} \right) = 2\sin 2x\).
Câu 35:
Tính giá trị biểu thức M = cos215° + cos225° + cos235° + cos245° + cos2105° + cos2115° + cos2125°.
Câu 36:
Một ca nô chạy trong hồ nước yên lặng có vận tốc tối đa 18 km/h. Nếu ca nô chạy ngang một con sông có dòng chảy theo hướng Bắc – Nam với vận tốc lên tới 5 m/s thì vận tốc tối đa nó có thể đạt được so với bờ sông là bao nhiêu và theo hướng nào?
Câu 37:
Một đơn vị bộ đội chuẩn bị 768kg lương thực đủ cho 80 người ăn trong 12 ngày luyện tập trước ngày tập trung quân ban chỉ huy báo về là số người sẽ tăng gấp 3 số dự kiến vậy để đủ ăn trong số ngày luyện tập như dự kiến đơn vị đó phải mua thêm số lương thực là bao nhiêu?
Câu 38:
Một đội công nhân 9 người trong một ngày đắp được 60 mét đường. Người ta bổ sung thêm 18 người nữa cùng đắp thì trong một ngày đắp được bao nhiêu mét đường đó (mức đắp mỗi người như nhau)?
Câu 39:
Cho hệ phương trình: \[\left\{ \begin{array}{l}mx - y = 1\\my - x = m\end{array} \right.\].
Tìm giá trị m để hệ phương trình trên có nghiệm duy nhất.
Câu 40:
Cho số hữu tỉ \(x = \frac{{3a + 2}}{{ - 1}}\). Với giá trị nào của a thì x dương?
Câu 41:
Xét tính chẵn lẻ của hàm số \(f\left( x \right) = \frac{{{{\sin }^{2020}}x + 2020}}{{\cos x}}\).
Câu 42:
Cho dãy gồm 6 số nguyên tố phân biệt và tăng dần. Hiệu giữa hai số liên tiếp của dãy số đã cho đều bằng nhau. Chứng minh rằng hiệu giữa số lớn nhất và số bé nhất không nhỏ hơn 150.
Câu 44:
Cho tam giác ABC có \(\widehat B = 60^\circ ,\widehat C = 45^\circ ,BC = a\).
a) Tính AB, AC.
b) Chứng minh \(\cos 75^\circ = \frac{{\sqrt 6 - \sqrt 2 }}{4}\).
Câu 46:
Cho tập A ≠ ∅ . Trong các mệnh đề sau, tìm mệnh đề sai?
A. A ∪ ∅ = A.
B. A ∪ A = A.
C. ∅ ∪ ∅ = ∅.
D. ∅ ∪ A = ∅.
Câu 48:
Cho tam giác ABC, đường cao kẻ từ A ký hiệu là ha. Chứng minh:
ha = 2RsinBsinC.
Câu 50:
Một đội công nhân có 77 người nhận sửa xong một quãng đường trong 9 ngày. Hỏi muốn làm xong quãng đường đó trong 7 ngày thì cần thêm bao nhiêu người ? (mức làm của mỗi người như nhau)
Câu 52:
Tìm tất cả các giá trị của m để hàm số \(y = \frac{{mx + 16}}{{x + m}}\) đồng biến trên (0; +∞)?
Câu 53:
Cho hàm số y = x3 − (m + 1)x2 − (2m2 − 3m + 2)x + 2m(2m − 1). Tìm tất cả các giá trị thực của tham số m để hàm số đã cho đồng biến trên [2;+∞).
Câu 54:
1 người đi xe đạp trên đoạn đường MN. Trên nửa đầu của đoạn MN đi với tốc độ 20km/h. Trên nửa còn lại thì \(\frac{1}{2}\)thời gian đầu đi với tốc độ 10km/h; trên \(\frac{1}{2}\)thời gian còn lại đi với tốc độ 5 km/h. Tính tốc độ trung bình trên đoạn MN.
Câu 55:
Cho tam giác ABC vuông tại A. Đặt BC = a, AC = b, AB = c, kẻ đường cao AH của tam giác ABC. Tính tỉ số \(\frac{{BH}}{{CH}}\) theo a, b, c.
Câu 59:
Cho tam giác ABC có AB = 6 cm, AC = 9 cm, BC = 10 cm, đường phân giác trong AD, đường phân giác ngoài AE.
a) Tính DB, EB.
b) Chứng minh tam giác ADE vuông.
c) Tính tỉ số diện tích của tam giác ABD và tam giác ADC.
Câu 60:
Cho hình thang vuông ABCD có AB = BC = a, AD = 2a. Chứng minh AC vuông góc DC.
Câu 61:
Cho tam giác ABC có AB = 1, \(\widehat A = 105^\circ ,\widehat B = 60^\circ \). Trên cạnh BC lấy điểm E sao cho BE = 1. Vẽ ED song song với AB. Chứng minh: \(\frac{1}{{A{C^2}}} + \frac{1}{{A{D^2}}} = \frac{4}{3}\).
Câu 62:
Cho tam giác vuông ABC có \(\widehat A = 90^\circ \). Kết quả nào sau đây đúng?
A. cos2B + sin2C = 1.
B. cos2C + sin2C = cos2B + sin2B = sin2A.
C. cos2C + sin2B = cos2B + sin2C = 1.
D. cos2A + sin2A = 2.
Câu 63:
Cho định lí: "Nếu m,n là hai số nguyên dương và mỗi số đều chia hết cho 3 thì m2 + n2 cũng chia hết cho 3". Hãy phát biểu và chứng định lí đảo của định lí trên (nếu có).
Câu 66:
Các góc nhìn đến đinh núi có chiều cao là TN so với mực nước biển được đo từ hai đèn tín hiệu tại A và B trên mặt biển.
Biết \(\widehat {TAB} = 29,7^\circ ,\widehat {TBN} = 41,2^\circ \) AB = 1500m.
Hỏi chiều cao TN của ngọn núi khoảng bao nhiêu mét? (làm tròn kết quả đến một chữ số thập phân).
Câu 67:
Có 5 người thợ dệt trong 8 giờ được 240 sản phẩm. Hỏi muốn làm được 192 sản phẩm như thế thì 4 người phải làm trong bao lâu? (Mức lao động của mỗi người là như nhau)
Câu 69:
Hàm số y = f(x2 + 2x) nghịch biến trên khoảng nào?
x |
–∞ |
–2 |
1 |
3 +∞ |
f'(x) |
– |
0 + |
0 – |
0 – |
Câu 70:
Một người đi bộ đều quãng đường đầu dài 3km với vận tốc 2m/s. Ở quãng đường tiếp theo dài 1,95km người đó đi hết 0,5h. Tính vận tốc trung bình của người đó trên cả hai quãng đường.
Câu 72:
Tìm giá trị nhỏ nhất lớn nhất của \(y = 2\sin \left( {x - \frac{\pi }{2}} \right) + 3\).
Câu 74:
Tìm giá trị nhỏ nhất, lớn nhất của hàm số y = sinx + \(\sin \left( {x + \frac{{2\pi }}{3}} \right)\).
Câu 76:
Đồ thị hàm số y = x3 − 3x2 − 9x + 1 có hai điểm cực trị A và B. Điểm nào dưới đây thuộc đường thẳng AB?
A. M(0; –1).
B. Q(–1; 10).
C. P(1; 0).
D. N(1; –10).
Câu 77:
Giải phương trình: sin4x + \({\cos ^4}\left( {x + \frac{\pi }{4}} \right) = \frac{1}{4}\).
Câu 82:
Có bao nhiêu giá trị nguyên của tham số m để hàm số \(y = \sqrt {5 - m\sin x - \left( {m + 1} \right)\cos x} \) xác định trên ℝ?
Câu 83:
Có bao nhiêu số nguyên là tổng của ba phần tử phân biệt của tập hợp {1; 4; 7; 10; 13; 16; 19}.
Câu 86:
Trong các tập hợp sau tập nào là con của tập nào: A = “Tập các tam giác cân”, B = “Tập các tam giác đều”, C = “Tập các tam giác vuông”, D = “Tập các tam giác vuông cân”.
Câu 90:
Có một tấm vải dài 35m. Người ta đem cắt thành các mảnh vải nhỏ, mỗi mảnh vải dài 1,25m. Hỏi người ta cắt được bao nhiêu mảnh vải nhỏ?
Câu 91:
Cho tam giác ABC vuông cân tại A, đường cao AH. Từ điểm M bất kì trên cạnh BC (M không trùng với B và C) kẻ các đường thẳng song song với AC và AB ở D và cắt AC ở E. Chứng minh \[\widehat {DHE} = 90^\circ \].
Câu 92:
So sánh M và \(\sqrt M \) biết M = \(\frac{{2 - 5\sqrt a }}{{\sqrt a + 3}}\) với a > 0.
Câu 95:
Bạn Thanh giải một đề thi toán trắc nghiệm với 30 câu hỏi, cứ mỗi câu đúng bạn được cộng 5 điểm, và mỗi câu sai bị trừ (0hoặc không trả lời) bị trừ hai điểm, sau khi giải xong bạn được số điểm là 101 điểm. Hỏi bạn Thanh đã trả lời đúng bao nhiêu câu và sai bao nhiêu câu?
Câu 96:
Cho A(0; 2), B(6; 4), C(1; –1). Tìm tọa độ của các điểm M, N, P sao cho:
a) Tam giác ABC nhận M, N, P là trung điểm của các cạnh.
b) Tam giác MNP nhận các điểm A, B, C làm trung điểm của các cạnh.
Câu 97:
Cho cấp số nhân (un) có số hạng đầu u1 = 6 và công bội q = 2. Tìm số hạng thứ tư của cấp số nhân đó.
Câu 98:
Cho hình bình hành ABCD. Trên các cạnh AB và CD lần lượt lấy các điểm M và N sao cho AM = DN. Đường trung trực của BM lần lượt cắt các đường thẳng MN và BC tại E và F.
a) Chứng minh E và F đối xứng với nhau qua AB.
b) Chứng minh tứ giác MEBF là hình thoi.
c) Hình bình hành ABCD có thêm điều kiện gì để tứ giác BCNE là hình thang cân.
Câu 99:
Cho tam giác ABC có điểm O thỏa mãn \[\left| {\overrightarrow {OA} + \overrightarrow {OB} - 2\overrightarrow {OC} } \right| = \left| {\overrightarrow {OA} - \overrightarrow {OB} } \right|\]. Hỏi tam giác ABC là tam giác gì?
Câu 100:
Cho tam giác ABC hãy chỉ ra vị trí của điểm M thỏa mãn mỗi trường hợp sau đây:
a) \(\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow {BA} \).
b) \(\overrightarrow {MA} - \overrightarrow {MB} + \overrightarrow {MC} = \overrightarrow 0 \).
Câu 101:
Có 8 viên bi trong đó có 1 viên bi nặng hơn sắt. Hỏi số lần tối thiểu cần thực hiện? Nêu rõ cách tìm ra viên bi bằng sắt.
Câu 103:
Một tập thể gồm 14 người gồm 6 nam và 8 nữ trong đó có An và Bình người ta muốn chọn một tổ công tác gồm 6 người. Tìm số cách chọn tổ sao cho có 1 tổ trưởng 5 tổ viên trong đó An và Bình không đồng thời có mặt.
Câu 104:
Một cửa hàng thời trang có hình thức khuyến mãi sau: giảm giá 10% cho tất cả các mặt hàng, nếu khách hàng nào mua từ 3 sản phẩm trở lên thì ngoài việc được áp dụng khuyến mãi trên, khách hàng còn được giảm thêm 5% trên tổng giá trị tiền phải trả (đã áp dụng hình thức khuyến mãi lần 1). Anh Bảo đã đến cửa hàng trên mua 2 áo sơ mi với giá niêm yết là 340 000 đồng/1 cái, 2 quần tây với giá niêm yết là 360 000 đồng/1 cái, và một đôi giày giá niêm yết 600 000 đồng/ 1 đôi. Hỏi Anh Bảo đã trả cho cửa hàng bao nhiêu tiền?
Câu 105:
Một đoàn tàu có 5 toa chở khách với mỗi toa còn ít nhất 5 chỗ trống. Trên sân ga có 5 hành khách chuẩn bị lên tàu. Tính xác suất để có ít nhất 1 toa có nhiều hơn 2 khách lên?
Câu 106:
Một hình chữ nhật có diện tích 15m2. Nếu tăng chiều dài lên hai lần, chiều rộng lên ba lần thì diện tích của hình chữ nhật mới là?
Câu 107:
Quãng sông từ bến A đến bến B là 24 km. Một chiếc thuyền xuôi dòng từ A đến B hết 1,5 giờ và ngược dòng từ B đến A hết 2,4 giờ. Hỏi cụm bèo trôi từ bến A đến bến B hết bao nhiêu thời gian?
Câu 108:
Tìm số hạng chứa x3 trong khai triển \({\left( {x - \frac{2}{{{x^2}}}} \right)^n}\) biết n là một số tự nhiên thỏa mãn \(\frac{1}{{A_2^2}} + \frac{1}{{A_2^2}} + ... + \frac{1}{{A_n^2}} = \frac{8}{9}\).
Câu 114:
B mua một con bò giá 10 triệu, bán 12 triệu. Vì tiếc nên B mua lại giá 15 triệu, rồi bán được 17 triệu. Vậy B lãi hay lỗi bao nhiêu?
Câu 115:
Cho biểu thức: \(C = \frac{x}{{2x - 2}} + \frac{{{x^2} + 1}}{{2 - 2{x^2}}}\).
a) Tìm ĐKXĐ.
b) Rút gọn C.
c) Tìm x để \(C = \frac{{ - 1}}{2}\).
Câu 116:
Cho 2 vectơ \(\overrightarrow a ,\overrightarrow b \) thỏa mãn: \(\left| {\overrightarrow a } \right| = 4;\left| {\overrightarrow b } \right| = 3;\left| {\overrightarrow a - \overrightarrow b } \right| = 4\). Gọi α là góc giữa hai vectơ \(\overrightarrow a ,\overrightarrow b \). Tìm cosα?
Câu 117:
Cho 2 hàm số y = (k – 2)x + k và y = (k + 3)x – k. Với giá trị nào của k thì đồ thị của 2 hàm số cắt nhau tại 1 điểm:
a) Trên trục tung.
b) Trên trục hoành.
Câu 118:
Cho hình vuông ABCD có AC cắt BD tại O. Gọi E và F theo thứ tự là các điểm đối xứng với O qua AD và BC.
a) Chứng minh rằng các tứ giác AODE,BOCF là hình vuông.
b) Nối EC cắt DF tại I. Chứng minh rằng OI ⊥ CD.
c) Biết diện tích hình lục giác ABFCDE = 6 .Tính độ dài các cạnh của hình vuông ABCD.
d) Lấy K là 1 điểm bất kì trên BC. Gọi G là trọng tâm của tam giác AIK. Chứng minh G thuộc 1 đường thẳng cố định khi K di chuyển trên BC.
Câu 119:
Cho tam giác ABC cân tại A có \(\widehat A = 70^\circ \). Tính các góc \(\widehat B,\widehat C\).
Câu 120:
Cho đường thẳng d cắt đường tròn (O;R) tại 2 điểm C, D. M là 1 điểm thuộc d và nằm ngoài (O;R) (MC < MD). Vẽ 2 tiếp tuyến MA, MB với (O;R). H là trung điểm của CD. Đường thẳng AB cắt OH tại E. Chứng minh ED là tiếp tuyến của (O; R).
Câu 121:
Tìm đường thẳng d biết nó cắt đường thẳng d1: y = 2x + 5 tại điểm có hoành độ bằng –2 và cắt đường thẳng d2: y =–3x + 4 tại điểm có tung độ bằng –2.
Câu 122:
Mua 5kg đường phải trả 85000 đồng. Hỏi mua 3,5kg đường cùng loại phải trả ít hơn bao nhiêu tiền ?
Câu 123:
Một người dự định sửa nền và lát gach 60cm x 60cm. Biết rằng kích thước nền nhà là 4,8m x 15m, giá tiền 1m ² gạch là 160 000 đồng.
a) Tính số tiền mua gạch?
b) Uớc lượng một viên gach giá bao nhiêu?
Câu 124:
Câu 125:
Đặt tính rồi tính (thương chỉ lấy hai chữ số ở phần thập phân).
a) 25 : 52. b) 48 : 23.Câu 126:
Rút gọn biểu thức: \(B = {\sin ^2}32^\circ - \frac{{2022.\tan 51^\circ }}{{\cot 39^\circ }} + {\sin ^2}58^\circ \).
Câu 128:
Cho biểu thức: \(A = \frac{{x - 3}}{x} - \frac{x}{{x - 3}} + \frac{9}{{{x^2} - 3x}}\).
a) Rút gọn A.
b) Tìm x để A = –3.
Câu 132:
Cho hình thang cân ABCD (AB//CD) điểm E là trung điểm của AB. Gọi I, K, M lần lượt là trung điểm của BC, CD, DA.
a) Tứ giác EIKM là hình gì?
b) Tìm điều kiện của hình thang ABCD để EIKM là hình vuông.
Câu 133:
Cho M(4; 1); (d) là đường thẳng luôn đi qua M và cắt Ox, Oy theo thứ tự tại A(a; 0); B(0; b). Hãy viết phương trình đường thẳng (d) sao cho SOAB = 2.
Câu 134:
Cho đường tròn (O;R) đường kính AB. Vẽ tiếp tuyến Bx của (O). Trên cùng 1 nửa mặt phẳng bờ AB có chứa Bx, lấy điểm M thuộc (O) (M khác A và B) sao cho MA > MB. Tia AM cắt Bx tại C. Từ C kẻ tiếp tuyến thứ hai CD với (O) (D là tiếp điểm)
a) Chứng minh OC ⊥ BD.
b) Chứng minh bốn điểm O, B, C, D cùng thuộc một đường tròn.
c) Chứng minh \(\widehat {CMD} = \widehat {CDA}\).
d) Kẻ MH vuông góc với AB tại H. Tìm vị trí của M để chu vi tam giác OMH đạt giá trị lớn nhất.