97 bài tập trắc nghiệm tổng hợp môn Toán 2024 cực hay có đáp án (Phần 82)
Haylamdo biên soạn và sưu tầm 97 bài tập trắc nghiệm tổng hợp môn Toán có lời giải chi tiết giúp học sinh lớp 12 biết cách làm bài tập & ôn luyện trắc nghiệm môn Toán.
97 bài tập trắc nghiệm tổng hợp môn Toán 2024 cực hay có đáp án (Phần 82)
Câu 1:
Xét xem dãy un = 3n – 1 có phải là cấp số nhân hay không? Nếu phải hãy xác định công bội.
Câu 2:
Một vé xem phim có mức giá là 60000 đồng. Trong dịp khuyến mãi cuối năm 2018, số lượng người xem phim tăng lên 45% nên tổng doanh thu cũng tăng 8,75%. Hỏi rạp phim đã giảm giá mỗi vé bao nhiêu % so với giá bán ban đầu?
Câu 5:
Cho a, b thuộc ℕ và (11a + 2b) chia hết cho 12. Chứng minh rằng: (a + 34b) chia hết cho 12.
Câu 7:
Phân tích đa thức thành nhân tử: 8(x + y + z)3 – (x + y)3 – (y + z)3 – (z + x)3.
Câu 8:
Cho tam giác ABC vuông tại A, đường cao AH kẻ HE, HF lần lượt vuông góc với AB, AC.
a) Chứng minh \(\frac{{EB}}{{FC}} = {\left( {\frac{{AB}}{{AC}}} \right)^3}\).
b) Chứng minh BC.BE.CF = AH3.
Câu 9:
Tìm m để hai đường thẳng (d1) y = mx + 5 – m và (d2) y = 3x + m – 1 cắt nhau tại một điểm nằm trên trục tung.
Câu 10:
Tìm m để 2 đường thẳng (d) cắt nhau tại 1 điểm trên trục tung cho hàm số y = (m + 2)x + 2m2 + 1 tìm m để hai đường thẳng (d): y = (m + 2)x + 2m2 + 1 và (d'): y = 3x + 3 cắt nhau tại 1 điểm trên trục tung.
Câu 11:
Tìm m để phương trình x2 – (3m – 1)x + 2m2 – m = 0 có nghiệm phân biệt x1, x2 thỏa mãn x1 = x22.
Câu 13:
Cho tam giác ABC vuông tại A (AB > AC) có đường cao AH. Gọi AD là phân giác của HAB.
a) Tính cạnh AH, AC biết HB = 18cm, HC = 8cm.
b) Chứng minh tam giác ADC cân và HD.BC = BD.DC.
c) Gọi E, F lần lượt là hình chiếu của H trên AB và AC. Chứng minh
SAEF = SABC.(1 – cos2B).sin2C.
Câu 14:
Rút gọn biểu thức: \(\frac{{{x^2}}}{{5x + 25}} + \frac{{2x - 10}}{x} + \frac{{50 + 5x}}{{{x^2} + 5x}}\).
Câu 15:
Cho tam giác ABC có \(\widehat B = \widehat C\), gọi H là trung điểm BC. Chứng minh AH là phân giác góc \(\widehat A\).
Câu 17:
Câu 18:
Cho hình bình hành ABCD và O là giao điểm của AC và BD. Trên đường chéo AC lấy 2 điểm M và N sao cho AM = MN = NC
a) Chứng minh: tứ giác BMDN là hình bình hành.
b) BC cắt DN tại K. Chứng minh: N là trọng tâm của tam giác BDC.
Câu 19:
Cho a, b, m là các số tự nhiên khác 0. Biết (7a + b) chia hết cho m và (8a + b) chia hết cho m. Chứng minh rằng b cũng chia hết cho m.
Câu 20:
Cho A là một số lẻ không tận cùng bằng 5. Chứng minh rằng tồn tại một bội của A gồm toàn chữ số 9.
Câu 23:
Cho nửa đường tròn tâm O đường kính AB. Gọi Ax, By là các tia vuông góc với AB (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Gọi M là điểm bất kì thuộc tia Ax. Qua M kẻ tiếp tuyến với nửa đường tròn, cắt By ở N. Tính số đo góc \(\widehat {MON}\).
Câu 24:
Cho a, b là các số nguyên dương và q = \(\frac{{{a^2} + {b^2}}}{{ab + 1}}\) là số nguyên. Chứng minh rằng q là số chính phương.
Câu 25:
Cho hình vuông ABCD cạnh a. Lấy M thuộc AB, N thuộc AD sao cho AM + AN + MN = 2a. Chứng minh \(\widehat {MCN} = 45^\circ \).
Câu 26:
Cho hình vuông ABCD tâm O, trên đoạn BC lấy điểm E bất kì, trên tia đối của tia CD lấy điểm F sao cho CE = CF.
a) Chứng minh DE = BF.
b) Tia DE cắt BF tại H. Chứng minh \(\widehat {DHF} = 90^\circ \).
c) Gọi I là trung điểm của EF, K là giao điểm của FE và BD. Chứng minh tứ giác AOIK là hình bình hành.
d) Chứng minh A, H, K thẳng hàng.
Câu 27:
Để thành lập các đội tuyển học sinh giỏi khối 9, nhà trường tổ chức thi chọn các môn Toán, Văn và Ngoại ngữ trên tổng số 111 học sinh. Kết quả có: 70 học sinh giỏi Toán, 65 học sinh giỏi Văn và 62 học sinh giỏi Ngoại ngữ. Trong đó, có 49 học sinh giỏi cả 2 môn Văn và Toán, 32 học sinh giỏi cả 2 môn Toán và Ngoại ngữ, 34 học sinh giỏi cả 2 môn Văn và Ngoại ngữ. Hãy xác định số học sinh giỏi cả ba môn Văn, Toán và Ngoại ngữ. Biết rằng có 6 học sinh không đạt yêu cầu cả ba môn.
Câu 29:
Cho tam giác ABC có BC = 6, AB = 5, \(\overrightarrow {BC} .\overrightarrow {BA} = 24\). Tính diện tích tam giác ABC
Câu 30:
Cho các số thực dương a, b, c thỏa mãn a + b + c = 3. Chứng minh
abc(1 + a2)(1 + b2)(1 + c2) ≤ 8.
Câu 31:
Cho tam giác ABC, kẻ tia phân giác Bx của góc B, Bx cắt tia AC tại M. Từ M kẻ đường thẳng song song với AB, nó cắt BC tại N. Từ N kẻ tia NY // Bx. Chứng minh:
a. \(\widehat {xAB} = \widehat {BMN}\).
b. Tia Ny là tia phân giác của góc MNC.
Câu 32:
Cho tam giác ABC cân tại A. Gọi I là tâm đường tròn nội tiếp tam giác, K là tâm đường tròn bàng tiếp góc A và O là trung điểm của IK.
a) Chứng minh rằng: 4 điểm B, I, C, K cùng thuộc (O).
b) Chứng minh rằng: AC là tiếp tuyến của (O).
c) Tính tổng diện tích các hình viên phân giới hạn bởi các cung nhỏ CI, IB, BK, KC và các dây cung tương ứng của (O) biết AB = 20, BC = 24.
Câu 33:
Cho tam giác ABC, IG vuông góc với IC trong đó I là tâm đường tròn nội tiếp, G là trọng tâm. Chứng minh \(\frac{{a + b + c}}{3} = \frac{{2ab}}{{a + b}}\).
Câu 34:
Cho tam giác ABC có \(\widehat B = \widehat C = 40^\circ \). Kẻ phân giác BD.
Chứng minh BD + AD = BC.
Câu 35:
Cho tam giác ABC có \(\widehat A = 150^\circ \). Diện tích tam giác ABC là:
A. \(\frac{1}{4}ab\)
B. \(\frac{1}{2}bc\)
C. \( - \frac{1}{2}ab\)
D. \(\frac{1}{4}bc\)
Câu 37:
Cho các hàm số y = 3x – 2 (d1); y = −x + 6 (d2).
a) Vẽ các đường thẳng (d1), (d2) trên cùng một mặt phẳng tọa độ.
b) Gọi A, B, C lần lượt là giao điểm của (d1), (d2); (d1) với trục hoành; (d2) với trục hoành
Tính chu vi và diện tích tam giác ABC.
Câu 38:
Cho 5 số nguyên dương đôi một phân biệt sao cho mỗi số trong chúng không có ước nguyên tố nào khác 2 và 3. Chứng minh rằng trong năm số đó tồn tại hai số mà tích của chúng là một số chính phương.
Câu 39:
Cho tam giác ABC nhọn nội tiếp (O). Kẻ đường cao AD của tam giác ABC, đường kính AK của đường tròn (O). Gọi E và F lần lượt là hình chiếu của B và C trên AK. Gọi M và N lần lượt là trung điểm của BC và AC. Chứng minh: MN ⊥ DF và M là tâm đường tròn ngoại tiếp tam giác DEF.
Câu 41:
Cho tam giác ABC. Chứng minh rằng sinA + sinB + sinC ≤ \(\frac{{3\sqrt 3 }}{2}\).
\\\\\\\`
1``
`
Câu 44:
Tam giác ABC nội tiếp (O), AD là đường kính của (O). M là trung điểm của của BC, H là trực tâm của tam giác ABC. Gọi X, Y, Z lần lượt là hình chiếu vuông góc của D lên HB, HC, BC. Chứng minh rằng 4 điểm X, Y, Z, M cùng thuộc 1 đường tròn.
Câu 45:
Cho hình trên biết AB // CD, CD // EF. Tính \(\widehat {ACD}\) và \(\widehat {ACE}\).
Câu 47:
Góc ở đỉnh của 1 tam giác cân bằng 78 độ, cạnh đáy là 28,5 cm. Tính các cạnh bên và diện tích của tam giác.
Câu 48:
Cho phương trình x2 + 2(m – 2)x + m2 – 4m = 0.
a) Giải phương trình khi m = 1.
b) Chứng minh rằng phương trình luôn có 2 nghiệm phân biệt với mọi giá trị của m.
Câu 49:
Tìm số tự nhiên X nhỏ nhất có 11 chữ số biết X chia cho 13 dư 3, chia cho 37 dư 3 và chia cho 29 dư 4.
Câu 50:
Cho hình bình hành ABCD có AB = 2AD; \(\widehat D = 70^\circ \). Vẽ BH vuông góc AD (H ∈ AD). Gọi M, N lần lượt là trung điểm cạnh CD, AB.
a) Chứng minh tứ giác ANMD là hình thoi.
b) Tính góc \(\widehat {HMC}\).
Câu 51:
Cho tam giác ABC vuông tại A, biết BC = 13cm; AB = 5cm.
a, Tính độ dài cạnh AC.
b, Kẻ đường cao AH. Tính độ dài đoạn thẳng AH.
Câu 52:
Cho tam giác ABD có AB = 15cm, AD = 20cm, BD = 25cm. Vẽ AM vuông góc BD.
a) Chứng minh: tam giác ABD vuông. Tính AM, BM, MD.
b) Kẻ tia Bx // AD, vẽ AM vuông góc BD cắt Bx tại C. Chứng minh: AB2 = AD.BC.Câu 53:
1 thùng rỗng nặng 1 yến. Khi đổ đầy nước thì thùng nước đó nặng 120kg. Hỏi một nửa thùng đó nặng bao nhiêu?
Câu 54:
Cho tam giác ABC vuông tại A, Đường cao AH. Biết BC = 8cm, BH = 2cm.
a. Tính AB, AC, AH.
b. Trên AC lấy điểm K (K khác A và C), gọi D là hình chiếu của A trên BK. Chứng
minh rằng BD.BK = BH.BC.
c. Chứng minh rằng SBHD = \(\frac{1}{4}\)SBKC.cos2\(\widehat {ABD}\).
Câu 55:
Từ điểm A ở ngoài đường tròn (O), kẻ hai tiếp tuyến AB, AC đến (O) với B, C là các tiếp điểm. Kẻ một đường thẳng d nằm giữa hai tia AB, AO và đi qua A cắt đường tròn (O) tại E, F (E nằm giữa A, F).
1. Chứng minh bốn điểm A, B, O, C cùng thuộc một đường tròn.
2. Gọi H là giao điểm của AD và BC. Chứng minh OH.OA = OE2.
3. Đường thẳng qua O vuông góc với EF cắt BC tại E. Chứng minh SF là tiếp tuyến của đường tròn (O).
Câu 56:
Một đu quay ở công viên có bán kính bằng 10m. Tốc độ của đu quay là 3 vòng/phút. Hỏi mất bao lâu để đu quay quay được góc 270°?
Câu 59:
Câu 60:
Cho tam giác ABC có đường cao AH. Trên AH, lấy các điểm K, I sao cho AK = KI = IH. Qua I, K lần lượt vẽ các đường thẳng EF//BC, MN//BC (E, M thuộc AB, F, N thuộc AC).
a) Tính \(\frac{{MN}}{{BC}};\frac{{EF}}{{BC}}\).
b) Cho biết diện tích của tam giác ABC là 90cm2. Tính diện tích tứ giác MNFE.
Câu 61:
Chứng minh rằng tam giác ABC vuông khi \(\frac{b}{{\cos B}} + \frac{c}{{\cos C}} = \frac{a}{{\sin B.\sin C}}\).
Câu 63:
Chứng minh rằng với mọi tam giác ABC ta có: \(\sin \frac{A}{2} = \sqrt {\frac{{\left( {p - b} \right)\left( {p - c} \right)}}{{bc}}} \).
Câu 65:
Tìm số tự nhiên \(\overline {abc} \) biết 1 + 2 + 3 + … + \(\overline {bc} = \overline {abc} \).
Câu 66:
Cho đường tròn (O, 13cm) và dây AB = 24cm. Trên các tia OA, OB lần lượt lấy M, N sao cho OM = ON = 33,8cm. Chứng minh MN là tiếp tuyến của (O).
Câu 67:
Cho hàm số y = f(x) có bảng biến thiên như sau:
Tổng số tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = g(x) = \(\frac{1}{{f\left( x \right) - 1}}\) là?
Câu 68:
Chứng minh rằng biểu thức sau luôn dương với mọi x.
a) 9x2 – 6x + 2;
b) x2 + x + 1;
c) 2x2 + 2x + 1.
Câu 71:
Cho tam giác nhọn ABC có trực tâm H và \(\widehat {BAC}\)= 60°. Gọi M, N, P theo thứ tự là chân các đường cao kẻ từ các đỉnh A, B, C của tam giác ABC và I là trung điểm của BC. Chứng minh rằng tam giác INP đều.
Câu 72:
Cho 2 số tự nhiên y > x thỏa mãn (2y − 1)2 = (2y − x)(6y + x).
Chứng minh 2y – x là số chính phương.
Câu 74:
Cho đường thẳng d: y = (m2 – 2)x + m – 1 với m là tham số. Tìm m để:
a) d song song với d1: y = 2x – 3.
b) d trùng với d': y = –x – 2.
Câu 75:
a) Cho đoạn thẳng BC = 4cm. Vẽ tam giác đều ABC. Có thể vẽ được bao nhiêu tam giác như vậy?
b) Cho BC = 4cm. Vẽ hình vuông ABCD. Có thể vẽ được bao nhiêu hình vuông như vậy?
c) Vẽ hình chữ nhật có một cạnh dài 6cm; một cạnh dài 4 cm.
d) Vẽ hình thoi có cạnh bằng 3 cm và độ dài đường chéo bằng 6cm.
Câu 77:
Cho tam giác ABC vuông tại A, AB = 3cm, AC = 4cm. Tính độ dài BC. Tính góc B và góc C.
Câu 79:
Cho hình chữ nhật ABCD có cạnh AD = a, M là trung điểm của cạnh AB. Biết rằng sin\(\widehat {MDB} = \frac{1}{3}\). Tính độ dài của đoạn thẳng AB theo a.
Câu 81:
Thay dấu * bằng chữ số thích hợp để mỗi số sau là số nguyên tố:
a) 7*.
b) 1*2.
c) *7.
d) 1*3.
Câu 82:
Trong đêm định mệnh tại Uchiha Clan, Itachi ngồi lên cột đèn tại Lăng Lũ để nhìn đứa em trai bé bỏng Sasuke lần cuối. Biết Sasuke ngồi cách cột điện 20m và nhìn thấy đỉnh của cột điện đó với góc nâng 55°. Cho biết khoảng cách từ mắt của Sasuke tới mặt đất là 2m. Tìm chiều cao của cột điện.
Câu 83:
Giải phương trình: \(\sin \left( {3x + \frac{{2\pi }}{3}} \right) + \sin \left( {x - \frac{{7\pi }}{5}} \right) = 0\).
Câu 84:
Cho hình bình hành ABCD. Vẽ về phía ngoài hình bình hành các tam giác đều ABM, AND. Gọi E, F, Q theo thứ tự là trung điểm của BD, AN, AM. Hỏi tam giác MNC là tam giác gì? Vì sao?
Câu 85:
Cho phương trình: x2 – (2m + 1)x + m2 + 2 = 0. Tìm m để phương trình có 2 nghiệm x1, x2 thỏa mãn 3x1x2 – 5(x1 + x2) + 7 = 0.
Câu 88:
Cho một cấp số nhân có công bội bằng 3 và số hạng đầu bằng 5. Biết số hạng chính giữa là 32805. Hỏi cấp số nhân đã cho có bao nhiêu số hạng?
Câu 89:
Tìm các chữ số a, b để:
a) A = \(\overline {56a3b} \) chia hết cho 18;
b) B = \(\overline {71a1b} \) chia hết cho 45;
c) C = \(\overline {6a14b} \) chia hết cho 2; 3; 5; 9;
d) D = \(\overline {25a1b} \) chia hết cho 15 nhưng không chia hết cho 2.
Câu 90:
người cùng làm một công việc. Nếu làm riêng, người thứ nhất mất 5 giờ, người thứ hai mất 4 giờ và người thứ ba mất 6 giờ mới làm xong công việc đó. Hỏi nếu ba người cùng làm thì sau 1 giờ làm được bao nhiêu phần công việc.
Câu 91:
Xem hình vẽ, cho biết a// b và c ⊥ a.
a) Đường thẳng c có vuông góc với đường thẳng b không? Vì sao?
b) Cho đường thẳng d cắt hai đường thẳng a và b tại A và B. Cho biết \(\widehat {{A_1}} = 115^\circ \). Tính số đo các góc \(\widehat {{B_2}};\widehat {{B_3}};\widehat {{A_3}}\).
c) Gọi Ax và By lần lượt là tia phân giác của các góc \(\widehat {{A_1}}\) và \(\widehat {{B_3}}\). Chứng minh: Ax //By.
Câu 92:
Cho hình thoi EGHK với O là giao điểm của 2 đường chéo. Biết EG = 15 cm. Tính độ dài của GH, HK, KE?
Câu 94:
Cho các số thực không âm a, b, c thay đổi thỏa mãn a2 + b2 + c2 = 1. Tìm GTLN của biểu thức Q = \(\sqrt {a + b} + \sqrt {b + c} + \sqrt {c + a} \).
Câu 95:
Cho các số thực x, y thỏa mãn: 4x2 + 2xy + y2 = 3.
Tìm GTNN, GTLN của P = x2 + 2xy – y2
Câu 97:
An có 90 bút bi và 150 quyển vở muốn chia thành các phần thưởng để ủng hộ học sinh nghèo, sao cho số bút và vở trong các phần thưởng là như nhau. Hỏi An chia được bao nhiêu số phần thưởng trong khoảng từ 5 đến 30 phần thưởng?