90 bài tập trắc nghiệm tổng hợp môn Toán 2024 cực hay có đáp án (Phần 83)
Haylamdo biên soạn và sưu tầm 90 bài tập trắc nghiệm tổng hợp môn Toán có lời giải chi tiết giúp học sinh lớp 12 biết cách làm bài tập & ôn luyện trắc nghiệm môn Toán.
90 bài tập trắc nghiệm tổng hợp môn Toán 2024 cực hay có đáp án (Phần 83)
Câu 1:
Câu 4:
Cho hình bình hành ABCD. Gọi E và F theo thứ tự là trung điểm của AB và CD
a) Chứng minh rằng AF // CE.
b) Gọi M, N theo thứ tự là giao điểm của BD và AF, CE. Chứng minh rằng DM = MN = NB.
Câu 8:
Cho tam giác ABC cân tại A lấy điểm D bất kì trên AB, lấy điểm E trên tia đối của tia CA sao cho CE = BD. Từ D kẻ đường thẳng song song với AC cắt BC tại F
a) Tam giác DBF là tam giác gì?
b) Chứng minh tứ giác DCEF là hình bình hành.
Câu 9:
Chứng minh 3n + 11 và 3n + 2 là hai số nguyên tố cùng nhau với mọi số tự nhiên n.
Câu 16:
Chứng minh rằng với mọi số nguyên n ta có: A = 15 + 25 + … + n5 chia hết cho B = 1 + 2 + 3 + … + n.
Câu 17:
Một đợt bán xe đạp ở cửa hàng sau khi giảm giá lần đầu là 10% và lần thứ hai giảm 5% thì bây giờ lại tăng 8%. Biết giá giảm hay tăng tính dựa theo giá đang bán. Hiện tại giá mỗi chiếc xe đạp là 7387200 đồng. Tính giá gốc ban đầu khi chưa tăng giảm của đợt bán xe đạp này.
Câu 18:
Cho tam giác ABC cân tại A có BD và CE là hai đường trung tuyến. Chứng minh:
a. Tam giác ADE cân tại A.
b. ∆ABD = ∆ACE.
c. BCDE là hình thang cân.
Câu 22:
Cho x, y, z khác 0 và x khác y khác z thỏa mãn x2 – xy = y2 – yz = z2 – zx = a.
a) Chứng minh rằng a khác 0.
b) Chứng minh: .
Câu 23:
Cho hình thang vuông ABCD (), có CD = 2AB, gọi H là hình chiếu của D trên AC, M là trung điểm của HC. Chứng minh .
Câu 24:
Người ta đã dùng 400 viên gạch hình vuông có cạnh dài 60 cm để lát nền cho một căn phòng hình vuông (coi các mảnh ghép là không đáng kể). Hỏi nền căn phòng hình vuông đó có cạnh dài bao nhiêu mét?
Câu 28:
Cô giáo muốn chia 240 bút bi, 210 bút chì và 180 tập giấy thành một số phần thưởng như nhau. Hỏi có thể chia được nhiều nhất là bao nhiêu phần thưởng, mỗi phần thưởng có bao nhiêu bút bi, bút chì tập giấy?
Câu 30:
Cho a là số thập phân có hai chữ số ở phần thập phân. Biết rằng khi làm tròn a đến hàng đơn vị thì được kết quả là 56. Tìm giá trị lớn nhất của a.
Câu 33:
Một khu vườn hình vuông có cạnh bằng 20m, người ta làm một lối đi xung quanh vườn có bể rộng x (m).
a) Viết biểu thức biểu diễn diện tích đất còn lại của khu vườn.
b) Tìm x biết diện tích dùng làm lối đi là 144m2.
Câu 36:
Tìm hai số biết tổng hai số là số lớn nhất có hai chữ số. Hiệu hai số là số lẻ bé nhất có 2 chữ số.
Câu 37:
Một mảnh vườn hình vuông cạnh 20 m. Người ta làm một lối đi xung quanh vườn rộng 2 m thuộc đất của vườn. Phần đất còn lại dùng để trồng trọt. Tính diện tích trồng trọt của mảnh vườn.
Câu 38:
Tìm hai số có tổng là số bé nhất có 4 chữ số và hiệu là số chẵn lớn nhất có 2 chữ số.
Câu 39:
Câu 40:
Cho tam giác ABC có AB = 6, AC = 8, . Tính độ dài cạnh BC và bán kính R của đường tròn ngoại tiếp tam giác (làm tròn kết quả đến hàng phần mười).
Câu 41:
Trong mặt phẳng tọa độ Oxy, cho parabol (P) có phương trình y = x² và đường thẳng (d) có phương trình y = mx + 3 (với m là tham số).
1. Chứng minh đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt A và B.
2. Gọi x1, x2 lần lượt là hoành độ của A và B. Tính tích các giá trị của m để 2x1 + x2 = 1
Câu 42:
Cho hai số a, b thỏa mãn a + b = 1.
Tính giá trị của biểu thức P = 2a3 + 6ab + 2b3 – 2024.
Câu 43:
Cho tam giác ABC vuông tại A và đường cao AH (H ∈ BC).
1) Cho AH = 6; BH = 3. Tính BC và số đo (góc làm tròn đến phút).
2) Đường thẳng vuông góc với BC tại B cắt tia CA tại K. Hạ AE ⊥ BK (E ∈ BK). Chứng minh rằng: AK.AC = EH2, từ đó suy ra BH.HC + BE.EK = AK.AC.
Câu 44:
Chứng minh rằng m + 2014n chia hết cho 2015 khi và chỉ khi n + 2014m chia hết cho 2015.
Câu 46:
Cho ΔABC cân tại A có AB = 5cm; BC = 6cm. Kẻ phân giác trong AM (M ∈ BC). Gọi O là trung điểm của AC và K là điểm đối xứng của M qua O.
a) Tính diện tích tam giác ABC.
b) Tứ giác ABMO là hình gì? Vì sao?
c) Để tứ giác AMCK là hình vuông thì tam giác ABC phải có thêm điều kiện gì?
Câu 49:
Một can xăng đựng 8,5 lít xăng cân nặng 8,22 kg, vỏ can cân nặng 1,25kg. Hỏi một thùng xăng cùng loại có 28,3 lít xăng cân nặng bao nhiêu kg, biết vỏ thùng cân nặng 3,08 kg?
Câu 54:
Cho n điểm phân biệt trên mặt phẳng (n ∈ ℕ, n > 2). Số véctơ khác có cả điểm đầu và điểm cuối là các điểm đã cho bằng.
Câu 55:
Cho đoạn thẳng MN = 24cm và điểm O nằm giữa hai điểm M và N. Gọi E là trung điểm của đoạn thẳng OM, F là trung điểm của đoạn thẳng ON, I là trung điểm đoạn thẳng EF. Độ dài đoạn thẳng IE là ...cm.
Câu 57:
Cho đoạn thẳng AB và điểm I sao cho .
a) Tìm hệ số k sao cho .
b) Chứng minh với mọi M ta có .
Câu 60:
Cho hình chóp SABCD có đáy là hình bình hành ABCD. Gọi M, N lần lượt là trung điểm AB, SC.
a) Xác định giao điểm I, K của AN, MN với (SBD).
b) Tính tỉ số .
c) Chứng minh B, I, K thẳng hàng. Tính tỉ sốCâu 61:
Trong mặt phẳng tọa độ Oxy cho tam giác ABC với A(−1;1); B(3;1); C(2;4). Tính chu vi và diện tích tam giác ABC.
Câu 62:
Một chữ nhật hình có chiều dài gấp 4 lần chiều rộng. Tăng chiều dài và chiều rộng lên 2m thì diện tích tăng thêm 94m2. Tinh chu vi và diện tích ban đầu của hình chữ nhật đó?
Câu 63:
Cho tam giác ABC có AB = 2, BC = 3, AC = 4. Tính độ dài đường trung tuyến MA với M là trung điểm của BC.
Câu 66:
Cho tam giác ABC cân tại A. Gọi D, E, F lần lượt là trung điểm của AB, AC, BC. Điểm I đối xứng với F qua E. Chứng minh tứ giác BDEC là hình thang cân.
Câu 68:
Câu 71:
Cho đường tròn (O) đường kính AB, lấy điểm C thuộc đường tròn (O), với C không trùng A và B. Gọi I là trung điểm của đoạn AC. Vẽ tiếp tuyến của đường tròn (O) tại tiếp điểm C cắt tia OI tại điểm D.
a) Chứng minh OI song song với BC.
b) Chứng minh DA là tiếp tuyến của đường tròn (O).
c) Vẽ CH vuông góc với AB, H ∈ AB và vẽ BK vuông góc với CD, K ∈ CD. Chứng minh CK² = HA.HB.
Câu 72:
Gọi M là trung điểm của đoạn thẳng AB. Trên 2 nửa phẳng đối nhau bờ AB lần lượt vẽ 2 tia Ax, By vuông góc AB. Trên Ax lấy điểm P, Trên Ay lấy Q sao cho AP = BQ. Chứng minh P, Q, M thẳng hàng.
Câu 73:
Cho tam giác ABC, gọi BM và CN lần lượt là các đường trung tuyến sao cho BM vuông góc với CN. Chứng minh cotA = 2 (cotB + cotC).
Câu 76:
Cho ba số x, y, z thỏa mãn x2 + y2 + z2 = xy + yz + zx và x + y + z = -3. Tính giá trị biểu thức B = x2022 + y2023 + z2024.
Câu 78:
Câu 79:
Một can nếu đựng đầy dầu cân nặng 72 kg, nếu đựng nửa số dầu đó thì cân nặng 38kg. Hỏi cái can rỗng thì nặng bao nhiêu ki-lô-gam?
Câu 80:
Bác Bình gửi tiết kiệm 500 triệu đồng kì hạn 1 tháng với lãi suất 6% một năm theo hình thức lãi suất kép. Nếu sau đúng một năm bác Bình mới đến ngân hàng rút tiền thì số tiền lãi là bao nhiêu?
Câu 81:
Cho nửa đường tròn tâm O, đường kính AB. Vẽ các tiếp tuyến Ax, By với nửa đường tròn cùng phía đối với AB. Từ điểm M trên đường tròn (M khác A; B) vẽ tiếp tuyến với nửa đường tròn, cắt Ax và By lần lượt tại C và D.
a) Chứng minh .
b) Chứng minh AC.BD không đổi.
Câu 82:
Cho tam giác ABC( AB < AC ) có hai đường phân giác CM, BN cắt nhau ở D. Qua A kẻ AE và AF vuông góc với BN và CM. Các đường thẳng AE và AF cắt BC ở I; K.
a) Chứng minh AFDE nội tiếp.
b) Chứng minh AB.NC = AN.BC.
Câu 83:
Cho tam giác ABC có đường cao AH và BD cắt nhau tại I.
a) Chứng minh 4 điểm C, D, I, H cùng thuộc 1 đường tròn.
b) Chứng minh 4 điểm A, B, H, D cùng thuộc 1 đường tròn.
c) Tính bán kính đường tròn đi qua 4 điểm C, D, H, I nếu biết CH = 4cm và = 30°.
Câu 84:
Cho tam giác vuông ABC vuông ở A có đường cao AH. Gọi E, F lần lượt là hình chiếu của H lên AB và AC.
a. So sánh AH và EF.
b. Tính độ dài HF biết AB = 6 cm, BC = 10 cm và BH = 3,6 cm.
Câu 86:
Cho tam giác ABC vuông tại A. Trên tia đối của tia AC kẻ tia Ax. Trên Ax lấy điểm D sao cho AD = AB. Kẻ tia Ay nằm trong BAD. Kẻ DH vuông góc với Ay tại H, kẻ BI vuông góc với Ay tại I.
a) Chứng minh rằng DH = AI; AH = BI.
b) Gọi M là trung điểm của BD. Chứng minh rằng Tam giácMDH = tam giác AMI.
c) Chứng minh rằng MHI là tam giác vuông.
Câu 87:
Cho tam giác ABC vuông tại A, đường cao AH biết BH = 3.6 cm; CH = 6.4 cm
a) Tính AH, AB và số đo góc .
b) Gọi M và N lần lượt là hình chiếu của H lên AB, AC. Chứng minh AM.AB = AN.AC và tam giác AMN đồng dạng với tam giác ACB.
Câu 88:
Câu 90:
Cho khối chóp S.ABCD đáy là hình chữ nhật, cạnh AB = a, AD = 2a. Hình chiếu vuông góc của S xuống ABCD là trung điểm H của AB. Biết SD = 3a. Tính thể tích khối chóp S.ABCD.