X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Giải phương trình: (x – 1)(x – 2)(x – 3)(x – 4) = 120.


Câu hỏi:

Giải phương trình: (x – 1)(x – 2)(x – 3)(x – 4) = 120.

Trả lời:

(x – 1)(x – 2)(x – 3)(x – 4) = 120

[(x – 1)(x – 4)][(x – 2)(x – 3)] = 120

(x2 – 5x + 4)(x2 – 5x + 6) = 120 (*)

Đặt x2 – 5x + 5 = y

Ta có (*) trở thành: (y – 1)(y + 1) = 120      

y2 – 1 = 120

y2 = 121

⇔ y=11y=11

+) Với y = 11, ta có: x2 – 5x + 5 = 11

x2 – 5x – 6 = 0

x2 – 6x + x – 6 = 0

x(x – 6) + (x – 6) = 0

(x – 6)(x + 1) = 0

⇔  x=6x=1

+) Với y = –11, ta có: x2 – 5x + 5 = –11

x2 – 5x + 16 = 0

⇔ x522+394=0

Ta thấy x522+394394>0  với mọi x nên phương trình vô nghiệm.

Vậy phương trình có tập nghiệm là S = {6;–1}.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Chứng minh rằng: BM+CN+AP=0 .

Xem lời giải »


Câu 2:

Cho ABC vuông tại A có AB < AC. Gọi D, E lần lượt là trung điểm của các cạnh BC và AC. Trên tia đối của tia DE lấy điểm F sao cho D là trung điểm của cạnh EF.

a) Chứng minh tứ giác BFCE là hình bình hành.

b) Chứng minh tứ giác BFEA là hình chữ nhật.

c) Gọi K là điểm đối xứng với F qua E. Chứng minh tứ giác AFCK là hình thoi.

d) Vẽ AH BC tại H. Gọi M là trung điểm của HC. Chứng minh FM AM.

Xem lời giải »


Câu 3:

Có 3 bì thư giống nhau lần lượt được đánh số thứ tự từ 1 đến 3 và 3 con tem giống nhau lần lượt đánh số thứ tự từ 1 đến 3. Dán 3 con tem đó vào 3 bì thư sao cho không có bì thư nào không có tem. Tính xác suất để lấy ra được 2 bì thư trong 3 bì thư trên sao cho mỗi bì thư đều có số thứ tự giống với số thứ tự con tem đã dán vào nó

Xem lời giải »


Câu 4:

Phân tích đa thức thành nhân tử: x2 – x – xy – 2y2  + 2y.

Xem lời giải »