X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Biết hàm số f(x) xác định trên R và có đạo hàm f’(x) = (x – 1)x^2(x + 1)^3(x + 2)^4


Câu hỏi:

Biết hàm số f(x) xác định trên R và có đạo hàm f’(x) = (x – 1)x2(x + 1)3(x + 2)4. Hỏi hàm số có bao nhiêu điểm cực trị?

A. 4.

B. 1

C. 2

D. 3

Trả lời:

Đáp án C.

f’(x) = (x – 1)x2(x + 1)3(x + 2)4

Ta thấy phương trình f’(x) = 02 nghiệm đơn là 1; -1 và có hai nghiệm kép là 0; -2

Từ đó số điểm cực trị là 2.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên:

Khẳng định nào sau đây là khẳng định đúng?

Xem lời giải »


Câu 2:

Cho hàm số y = mx4 – (m2 – 1)x2 + 1. Khẳng định nào sau đây là sai?

Xem lời giải »


Câu 3:

Cho các phát biểu sau:

I. Đồ thị hàm số có y = x4 – x + 2 có trục đối xứng là Oy.

II. Hàm số f(x) liên tục và có đạo hàm trên khoảng (a;b) đạt cực trị tại điểm x0 thuộc khoảng (a;b) thì tiếp tuyến tại điểm M(x0,f(x0)) song song với trục hoành.

III. Nếu f(x) nghịch biến trên khoảng (a;b) thì hàm số không có cực trị trên khoảng (a;b).

IV. Hàm số f(x) xác định và liên tục trên khoảng (a;b) và đạt cực tiểu tại điểm x0 thuộc khoảng (a;b) thì f(x) nghịch biến trên khoảng (a;x0) và đồng biến trên khoảng (x0;b).

Các phát biểu đúng là:

Xem lời giải »


Câu 4:

Hàm số nào trong các hàm số sau đây không có cực trị?

Xem lời giải »