X

Các dạng bài tập Toán lớp 12

Toán lớp 12 - Các dạng bài tập Toán lớp 12 chọn lọc, có đáp án


Toán lớp 12 - Các dạng bài tập Toán lớp 12 chọn lọc, có đáp án

Loạt bài Chuyên đề: Tổng hợp Lý thuyết và Bài tập trắc nghiệm Toán lớp 12: Giải tích và Hình học có đáp án được biên soạn theo từng dạng bài có đầy đủ: Lý thuyết - Phương pháp giải, Bài tập Lý thuyết, Bài tập tự luận và Bài tập trắc nghiệm Giải tích 12 và Hình học 12 có đáp án giúp bạn học tốt, đạt điểm cao trong bài kiểm tra và bài thi môn Toán lớp 12.

Toán lớp 12 - Các dạng bài tập Toán lớp 12 chọn lọc, có đáp án

Chuyên đề: Ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm số

Tổng hợp lý thuyết Chương Ứng dụng đạo hàm để khảo sát hàm số

Chủ đề: Tính đơn điệu của hàm số

Chủ đề: Cực trị của hàm số

Chủ đề: Giá trị lớn nhất, giá trị nhỏ nhất của hàm số

Chủ đề: Tiệm cận của đồ thị hàm số

Chủ đề: Tiếp tuyến của đồ thị hàm số

Chủ đề: Tương giao của đồ thị hàm số

Chủ đề: Điểm thuộc đồ thị

Chủ đề: Nhận dạng đồ thị hàm số

Bài tập trắc nghiệm

Chuyên đề: Hàm số lũy thừa, Hàm số mũ và hàm số logarit

Tổng hợp lý thuyết Chương Hàm số lũy thừa, Hàm số mũ, hàm số logarit

Chủ đề: Hàm số mũ, Hàm số lũy thừa, Hàm số Lôgarit

Chủ đề: Phương trình mũ

Chủ đề: Bất phương trình mũ

Chủ đề: Phương trình logarit

Chủ đề: Bất phương trình logarit

Bài tập đồ thị hàm số mũ và logarit

Các dạng bài toán thực tế ôn thi đại học cực hay

Bài tập trắc nghiệm

Chuyên đề: Nguyên hàm - tích phân và ứng dụng

Tổng hợp lý thuyết Chương Nguyên hàm, Tích phân và ứng dụng

Chủ đề: Nguyên hàm

Chủ đề: Tích phân

Bài tập trắc nghiệm

Chuyên đề: Số phức

Tổng hợp lý thuyết Chương Số phức

Dạng đại số của số phức

Tìm số phức thỏa mãn điều kiện

Căn bậc hai của số phức và phương trình bậc hai

Dạng lượng giác của số phức

Tập hợp điểm biểu diễn số phức

Tìm max min số phức

Bài tập số phức tổng hợp

Bài tập trắc nghiệm

Chuyên đề: Khối đa diện

Tổng hợp lý thuyết Chương Khối đa diện

Chủ đề: Khái niệm khối đa diện

Chủ đề: Thể tích khối đa diện

Chủ đề: Thể tích hình chóp

Chủ đề: Thể tích hình lăng trụ

Chuyên đề: Mặt nón, mặt trụ, mặt cầu

Tổng hợp lý thuyết Chương Mặt nón, mặt trụ, mặt cầu

Chủ đề: Mặt cầu

Chủ đề: Hình trụ

Chủ đề: Hình nón, khối nón

Chuyên đề: Phương pháp tọa độ trong không gian

Tổng hợp lý thuyết Chương Phương pháp tọa độ trong không gian

Chủ đề: Hệ tọa độ trong không gian

Chủ đề: Phương trình mặt cầu

Chủ đề: Phương trình mặt phẳng

Chủ đề: Phương trình đường thẳng trong không gian

Bài tập trắc nghiệm




Cách xét tính đơn điệu của hàm số

A. Phương pháp giải & Ví dụ

Phương pháp giải

1. Định nghĩa: Cho hàm số y = f(x) xác định trên K, với K là một khoảng, nửa khoảng hoặc một đoạn.

    Hàm số y = f(x) đồng biến (tăng) trên K nếu ∀x1, x2 ∈ K, x1 < x2 ⇒ f(x1) < f(x2).

    Hàm số y = f(x) nghịch biến (giảm) trên K nếu ∀x1, x2 ∈ K, x1 < x2 ⇒ f(x1) > f(x2).

2. Điều kiện cần để hàm số đơn điệu: Giả sử hàm số y = f(x) có đạo hàm trên khoảng K.

    Nếu hàm số đồng biến trên khoảng K thì f'(x) ≥ 0,∀x ∈ K và f'(x) = 0 xảy ra tại một số điểm hữu hạn.

    Nếu hàm số nghịch biến trên khoảng K thì f'(x) ≤ 0,∀x ∈ K và f'(x) = 0 xảy ra tại một số điểm hữu hạn.

3. Điều kiện đủ để hàm số đơn điệu: Giả sử hàm số y = f(x) có đạo hàm trên khoảng K.

    Nếu f'(x) > 0,∀x ∈ K thì hàm số đồng biến trên khoảng K.

    Nếu f'(x) < 0,∀x ∈ K thì hàm số nghịch biến trên khoảng K.

    Nếu f'(x) = 0,∀x ∈ K thì hàm số không đổi trên khoảng K.

4. Các bước xét tính đơn điệu của một hàm số cho trước

   Bước 1: Tìm tập xác định của hàm số y = f(x)

   Bước 2: Tính đạo hàm f'(x) và tìm các điểm xo sao cho f'(xo) = 0 hoặc f'(xo) không xác định.

   Bước 3: Lập bảng xét dấu và đưa ra kết luận

Ví dụ minh họa

Ví dụ 1: Xét tính đồng biến và nghịch biến của hàm số sau y=x3 - 6x2 + 9x -3

Hướng dẫn

Tập xác định: D = R

Ta có y' = 3x2 - 12x + 9

y' = 0 ⇔ Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bảng biến thiên:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Vậy hàm số đồng biến trên các khoảng (-∞;1) và (3;+∞)

Hàm số nghịch biến trên khoảng (1;3)

Ví dụ 2: Xét tính đồng biến và nghịch biến của hàm số sau √(2x-x2)

Hướng dẫn

Tập xác định D = [0; 2]

Ta có : y' = Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải y' = 0 ⇔ x=1

Bảng biến thiên

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Vậy hàm số đồng biến trên khoảng (0; 1); Hàm số nghịch biến trên khoảng (1; 2)

Ví dụ 3: Xét tính đồng biến và nghịch biến của hàm số sau y = (3x + 1)/(1 - x)

Hướng dẫn

Hàm số xác định và liên tục trên D = R\{1}.

Tìm y' = Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải > 0; ∀x ≠ 1.

Bảng biến thiên:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Hàm số đã cho đồng biến trên các khoảng (-∞ ; 1)và (1 ; +∞).

B. Bài tập vận dụng

Bài 1: Xét tính đồng biến và nghịch biến của hàm số sau y = y= -x3 + 6x2 - 9x + 4

Lời giải:

Hàm số đã cho xác định trên D=R.

Tính y' = -3x2 + 12x - 9. Cho y' = 0 ⇔ -3x2 + 12x - 9 = 0 ⇔ Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bảng biến thiên:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Dựa vào bảng biến thiên,hàm số đồng biến trên (1;3).

Hàm số nghịch biến trên các khoảng (-∞; 1) và (3; +∞)

Bài 2: Xét tính đồng biến và nghịch biến của hàm số sau y = (3 - 2x)/(x + 7)

Lời giải:

Hàm số đã cho xác định và liên tục trên: D = R\{-7}.

Tính y' = Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải > 0,∀x ∈ D = R\{-7}.

Bảng biến thiên:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Dựa vào bảng biến thiên, hàm số đã cho luôn nghịch biến trên: (-∞; -7)và(-7; +∞).

Bài 3: Xét tính đồng biến và nghịch biến của hàm số sau y = x4 + 4x + 6

Lời giải:

Tập xác định: D = R.

Tính: y' = 4x3 + 4. Cho y' = 0 ⇔ 4x3 + 4 = 0 ⇔ x = -1.

Bảng biến thiên:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Dựa vào bảng biến thiên, hàm số đồng biến trên khoảng (-1; +∞).

Hàm số nghịch biến trên khoảng (-∞; -1)

Bài 4: Xét tính đồng biến và nghịch biến của hàm số sau y = Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Lời giải:

Hàm số đã cho xác định khi: x2 - x + 3 > 0 đúng ∀x ∈ R.

Hàm số đã cho xác định trên D = R

Ta có: y' = Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Cho y' = 0 ⇔ Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải = 0 ⇔-5x + 8 = 0 ⇔ x = 8/5.

Bảng biến thiên:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Dựa vào bảng biến thiên, hàm số đã cho đồng biến trên(-∞; 8/5).

Hàm số nghịch biến trên khoảng (8/5; +∞)

....................................

....................................

....................................

Tìm tham số m để hàm số đơn điệu

A. Phương pháp giải & Ví dụ

Phương pháp giải

1. Hàm đa thức bậc ba: y=f(x)=ax3+bx2+cx+d (a≠0)

⇒ f'(x)=3ax2+2bx+c

    Hàm đa thức bậc ba y=f(x) đồng biến trên R khi và chỉ khi Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

   Hàm đa thức bậc ba y=f(x) nghịch biến trên R khi và chỉ khiCác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

2. Hàm phân thức bậc nhất: Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

    Hàm số đồng biến trên các khoảng xác định khi y'>0 hay ad-bc>0

   Hàm số nghịch biến trên các khoảng xác định khi y'>0 hay ad-bc<0

Ví dụ minh họa

Ví dụ 1: Cho hàm số Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải đồng biến trên tập xác định.

Hướng dẫn

      + Tập xác định: D=R

      + Ta có: y'=x2+2(m+1)x-(m+1)

      + Δ'=(m+1)2+4(m+1)=m2+6m+5

      + Để hàm số đồng biến trên tập xác định thì Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

   Vậy giá trị của tham số cần tìm là -5≤m≤-1

Ví dụ 2: Cho hàm số Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải. Tìm giá trị của m để hàm số luôn đồng biến trên R.

Hướng dẫn

      + Tập xác định: D=R

      + Đạo hàm y'≠(m2-m) x2+4mx+3

      + Hàm số luôn đồng biến trên R Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải y'≥0 ∀ x∈R

    Xét m2-m=0 ⇒ Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

   Với m=0 phương trình trở thành y=3x-1;y'=3>0 ∀x∈R

⇒ m=0 thỏa mãn yêu cầu bài toán.

    Với m=1 phương trình trở thành y=2x2+3x-1;y'=4x+3

    Khi đó y'>0Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải 4x+3>0Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải x<-3/4

⇒ m=1 không thỏa mãn yêu cầu bài toán.

    Xét m2-m≠0 Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

   Khi đó Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

   Từ hai trường hợp trên ta có giá trị m cần tìm là -3≤m<0

Ví dụ 3: Cho hàm số Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải. Tìm m để hàm số đồng biến trên từng khoảng xác định.

Hướng dẫn

      + Tập xác định: D=R\{m}

      + Đạo hàm Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải . Dấu của y' là dấu của biểu thức -m2-7m+8

      + Hàm số đồng biến trên từng khoảng xác định Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải y'>0 ∀x∈D

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải -m2-7m+8>0 Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải -8<m<1

    Vậy giá trị m cần tìm là -8<m<1

B. Bài tập vận dụng

Câu 1: Tìm tất cả các giá trị thực của tham số m để hàm số y = x3 + 3x2 + mx + 2 đồng biến trên R.

Lời giải:

+ Ta có: y '= 3x2 + 6x + m

      + Để hàm số đã cho đồng biến trên R thì y' ≥ 0,∀x ∈R

      + Yêu cầu bài toán trở thành tìm điều kiện của m để y' ≥ 0,∀x ∈R

Ta có y' = 3x2 + 6x + m, ta có: a = 3>0,Δ = 36 - 12m

Để y' ≥ 0,∀x ∈ R khi Δ ≤ 0 ⇔ 36 - 12m ≤ 0 ⇔ m ≥ 3

Vậy giá trị của tham số m cần tìm là m ≥ 3

Câu 2: Tìm tập hợp tất cả các tham số thực của m để hàm số y = x3 - (m + 1) x2+3x+1 đồng biến trên khoảng (-∞;+∞).

Lời giải:

+ Tập xác định D = R.

      + Ta có y' = 3x2 - 2(m + 1)x + 3.

      + Hàm số y = x3 - (m + 1) x2 + 3x + 1 đồng biến trên khoảng (-∞; +∞)

   ⇔ y' ≥ 0,∀x∈R

    ⇔ Δ' ≤ 0 ⇔ (m + 1)2 - 9 ≤ 0 ⇔ m2 + 2m - 8 ≤ 0 ⇔ -4 ≤ m ≤2.

Vậy giá trị của tham số m cần tìm là -4 ≤ m ≤ 2

Câu 3: Tìm tập hợp tất cả các giá trị của tham số thực m để hàm số y = Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải đồng biến trên từng khoảng xác định.

Lời giải:

Ta có: Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Theo yêu cầu bài toán, để hàm số đồng biến trên từng khoảng xác định thì

y'>0,∀ x ∈D ⇔ -m2 + 6 > 0 ⇔ -√6<m<√6

Vậy giá trị của tham số m cần tìm là -√6 < m < √6

....................................

....................................

....................................