X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

c) Khi A di động trên đường tròn (O; 3R), gọi M là trực tâm tam giác ABC. Chứng minh M di động trên một đường tròn cố định.


Câu hỏi:

c) Khi A di động trên đường tròn (O; 3R), gọi M là trực tâm tam giác ABC. Chứng minh M di động trên một đường tròn cố định.

Trả lời:

c) Ta có: OC CA, BM CA nên OC // BM.

Tương tự ta có OB // CM.

Xét tứ giác OBMC có OC // BM và OB // CM nên OBMC là hình bình hành.

Lại có OB = OC nên OBMC là hình thoi.

Do đó OM, BC vuông góc với nhau tại trung điểm của mỗi đường, gọi là H.

Khi đó OM = 2OH.

Xét DOBA có đường cao BH, theo hệ thức lượng ta có:

OB2 = OH.OA, suy ra OH=OB2OA=R23R=R3

Do đó OM=2OH=2R3.

Vậy khi A di động trên đường tròn (O; 3R) thì M di động trên đường tròn O;2R3.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Có bao nhiêu số tự nhiên chẵn có 4 chữ số chia hết cho 9?

Xem lời giải »


Câu 2:

Tập hợp các số nguyên tố nhỏ hơn 10 là:

Xem lời giải »


Câu 3:

Một tháng có ba ngày chủ nhật đều là ngày chẵn. Ngày 15 tháng đó là thứ mấy?

Xem lời giải »


Câu 4:

Một người mua một số cam, sau khi bán hết người đó thu được 682 500 đồng. Tính ra người đó lãi được 18% giá bán. Hỏi giá vốn số cam đó là bao nhiêu?

Xem lời giải »


Câu 5:

Bạn Long có một quyển sách 80 trang nhưng vì quyển sách đã cũ nên bị mọt ăn mất một số trang. Các trang bị ăn là: 50; 28; 34; 69. Hỏi quyển sách còn lại bao nhiêu trang?

Xem lời giải »


Câu 6:

Một cửa hàng có 12,45 tạ gạo. Cửa hàng đã bán hai lần, mỗi lần 367 kg. Hỏi cửa hàng còn lại bao nhiêu kg gạo?

Xem lời giải »


Câu 7:

Một hình vuông có cạnh 12,36 cm. Tính chu vi hình vuông đó

Xem lời giải »


Câu 8:

Tổng 10 số tự nhiên liên tiếp đầu tiên bằng bao nhiêu?

Xem lời giải »