Cho đoạn thẳng AB. Gọi O là trung điểm của AB. Vẽ về 1 phía AB các tia Ax và By vuông góc với AB. Lấy C trên Ax, D trên By sao cho góc COD = 90^0 a) Chứng minh rằng: b) Chứng minh rằng: C
Câu hỏi:
Cho đoạn thẳng AB. Gọi O là trung điểm của AB. Vẽ về 1 phía AB các tia Ax và By vuông góc với AB. Lấy C trên Ax, D trên By sao cho \(\widehat {CO{\rm{D}}} = 90^\circ \)
a) Chứng minh rằng:
b) Chứng minh rằng: CD = AC + BD
c) Kẻ OM ⊥ CD tại M, gọi N là giao điểm của AD với BC. Chứng minh rằng MN // AC.
Trả lời:
Lời giải
a) Vì tam giác ACO vuông tại A
Nên \(\widehat {AOC} + \widehat {AC{\rm{O}}} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°)
Ta có: \(\widehat {AOC} + \widehat {CD{\rm{O}}} + \widehat {DOB} = 180^\circ \)
Hay \(\widehat {AOC} + \widehat {DOB} = 180^\circ - \widehat {CD{\rm{O}}} = 180^\circ - 90^\circ = 90^\circ \)
Suy ra \(\widehat {BO{\rm{D}}} = \widehat {AC{\rm{O}}}\)
Xét ∆ACO và ∆BDO có
\(\widehat {CAO} = \widehat {DBO}\left( { = 90^\circ } \right)\)
\(\widehat {BO{\rm{D}}} = \widehat {AC{\rm{O}}}\) (Chứng minh trên)
Suy ra (g.g)
b) Gọi E là giao điểm của CO và BD
Xét ∆ACO và ∆BEO có
\(\widehat {CAO} = \widehat {EBO}\left( { = 90^\circ } \right)\)
AO = BO (giả thiết)
\(\widehat {BOE} = \widehat {AOC}\) (hai góc đối đỉnh)
Suy ra ∆ACO và ∆BEO (g.c.g)
Do đó AC = BE, CO = OE (các cặp cạnh tương ứng)
Xét ∆COD và ∆EOD có
OD là cạnh chung;
\(\widehat {CO{\rm{D}}} = \widehat {EOD}\left( { = 90^\circ } \right)\);
CO = OE (chứng minh trên)
Suy ra ∆COD và ∆EOD (c.g.c)
Do đó CD = DE (hai cạnh tương ứng)
Ta có CD = DE = BD + BE = BD + AC
Vậy CD = AC + BD
c) Ta có AC ⊥ AB và DB ⊥ AB
Suy ra AC // BD
Do đó \(\widehat {CAN} = \widehat {N{\rm{D}}B}\) (hai góc so le trong)
Xét ∆ANC và ∆DNB có
\(\widehat {ANC} = \widehat {BN{\rm{D}}}\) (hai góc đối đỉnh)
\(\widehat {CAN} = \widehat {N{\rm{D}}B}\) (Chứng minh trên)
Suy ra (g.g)
Do đó \(\frac{{AN}}{{ND}} = \frac{{AC}}{{B{\rm{D}}}}\)
Mà AC = BE nên \(\frac{{AN}}{{ND}} = \frac{{BE}}{{B{\rm{D}}}}\)
Ta có DC = DE (chứng minh câu a)
Suy ra tam giác DCE cân ở D
Mà DO là đường cao
Nên DO là phân giác của \(\widehat {C{\rm{D}}E}\)
Suy ra \(\widehat {{\rm{CD}}O} = \widehat {O{\rm{D}}E}\)
Xét ∆MOD và ∆BOD có
\(\widehat {{\rm{DMO}}} = \widehat {DBO}\left( { = 90^\circ } \right)\)
OD là cạnh chung
\(\widehat {{\rm{MD}}O} = \widehat {O{\rm{DB}}}\) (chứng minh trên)
Suy ra ∆MOD = ∆BOD (cạnh huyền – góc nhọn)
Do đó MD = BD, OM = OB
Mà OB = OA nên OM = OA
Xét ∆MOC và ∆AOC có
\(\widehat {{\rm{CMO}}} = \widehat {CAO}\left( { = 90^\circ } \right)\)
OC là cạnh chung
OM = OA (chứng minh trên)
Suy ra ∆MOC = ∆AOC (cạnh huyền – cạnh góc vuông)
Do đó MC = AC
Khi đó: \(\frac{{AN}}{{ND}} = \frac{{BE}}{{B{\rm{D}}}} = \frac{{AC}}{{BD}} = \frac{{CM}}{{DM}}\)
Suy ra MN // AC (định lí Talet đảo)
Vậy MN // AC.