X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho đường tròn (C): x^2 + y^2 - 2x + 2y ‒ 7 = 0 và đường thẳng d: x + y + 1 = 0


Câu hỏi:

Cho đường tròn (C): x2 + y2 ‒ 2x + 2y ‒ 7 = 0 và đường thẳng d: x + y + 1 = 0. Tìm tất cả các đường thẳng song song với đường thẳng d và cắt đường tròn (C) theo dây cung có độ dài bằng 2.

A. x + y + 4 = 0 và x + y 4 = 0.

B. x + y + 2 = 0.

C. x + y + 4 = 0.

D. x + y + 2 = 0 và x + y 2 = 0.

Trả lời:

Đáp án đúng là: A

Cho đường tròn (C): x^2 + y^2 - 2x + 2y ‒ 7 = 0 và đường thẳng d: x + y + 1 = 0 (ảnh 1)

Tâm O(1; ‒1), bán kính \(R = \sqrt {{1^2} + {{( - 1)}^2} - \left( { - 7} \right)} = 3\)

Gọi đường thẳng cần tìm là d’: x + y + c = 0.

Gọi A, B lần lượt là giao điểm của d’ và (C).

Xét ∆OHB vuông tại H (H là chân đường cao kẻ từ O trong tam giác OAB ).

Ta có: \(d\left( {O,AB} \right) = \frac{{\left| {1 + \left( { - 1} \right) + c} \right|}}{{\sqrt 2 }} = OH = \sqrt {O{B^2} - B{H^2}} \)\( = \sqrt {{3^2} - {1^2}} = 2\sqrt 2 .\)

\( \Leftrightarrow \frac{{\left| c \right|}}{{\sqrt 2 }} = 2\sqrt 2 \Leftrightarrow \left| c \right| = 4 \Leftrightarrow c = \pm 4\)

Vậy đường thẳng cần tìm có dạng x + y + 4 = 0 hoặc x + y ‒ 4 = 0.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Hệ số góc của tiếp tuyến của đồ thị hàm số \[y = \frac{{{x^4}}}{4} + \frac{{{x^2}}}{2} - 1\] tại điểm có hoành độ x =  ‒1 là:

Xem lời giải »


Câu 2:

Tìm hai số tự nhiên, biết rằng tổng của chúng bằng 2030 và hiệu của số lớn và số bé bằng 30.

Xem lời giải »


Câu 3:

Cho hai đường thẳng d1 và d2 song song có bao nhiêu phép tịnh tiến biến đường thẳng d1 thành đường thẳng d2:

Xem lời giải »


Câu 4:

Cho hình chóp S.ABCD có đáy ABCD là hình thang đáy lớn CD. Gọi M là trung điểm của cạnh SA, N là giao điểm của cạnh SB và mặt phẳng (MCD). Mệnh đề nào sau đây là mệnh đề đúng?

Xem lời giải »


Câu 5:

Cho hình hộp ABCD.A'B'C'D', gọi M là trung điểm CD, (P) là mặt phẳng đi qua M và song song với B'D và CD'. Thiết diện của hình hộp cắt bởi mặt phẳng (P) là hình gì?

Xem lời giải »


Câu 6:

Cho lục giác đều ABCDEF tâm O. Các vec tơ đối của vecto \[\overrightarrow {OD} \] là:

Xem lời giải »