X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho hàm số y = f(x) = 4x2 – 4mx + m2 – 2m. Tìm tất cả các giá trị của tham số m sao cho min(x) = 3 trên [–2; 0].


Câu hỏi:

Cho hàm số y = f(x) = 4x2 – 4mx + m2 – 2m. Tìm tất cả các giá trị của tham số m sao cho min(x) = 3 trên [–2; 0].

Trả lời:

Hàm số y = f(x) = 4x2 – 4mx + m2 – 2m có a = 4 > 0, b2a=m2

TH1: Nếu m22m4

Thì f(x) đồng biến trên [–2; 0]

Suy ra f(x)min = f(–2) = 4(–2)2 – 4m . (–2) + m2 – 2m = m2 + 6m + 16 = 3

m2 + 6m + 13 = 0

m2 + 6m + 9 + 4 = 0

(m + 3)2 + 4 = 0

Vì (m + 3)2 ≥ 0 với mọi m

Nên (m + 3)2 + 4 > 0 với mọi m

Suy ra phương trình m2 + 6m + 13 = 0 vô nghiệm

TH2: Nếu m20m0

Thì f(x) nghịch biến trên [–2; 0]

Suy ra f(x)min = f(0) = 4(0)2 – 4m . 0 + m2 – 2m = m2 – 2m = 3

m2 – 2m – 3 = 0

m2 + m – 3m – 3 = 0

m(m + 1) – 3(m + 1) = 0

(m + 1)(m – 3) = 0

⇔ m=1m=3

Mà m ≥ 0 nên m = 3

+) TH3: Nếu

Thì f(x) nghịch biến trên [–2; 0]

Suy ra f(x)min=fm2=4m224mm2+m22m=3

– 2m = 3

m=32  (thỏa mãn)

Vậy m=32  hoặc m = 3.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Tính nhanh: (–25) . (75 – 45) – 75 . (45 – 25).

Xem lời giải »


Câu 2:

Chứng tỏ: ab¯.101=abab¯

Xem lời giải »


Câu 3:

Với mỗi số nguyên dương n, kí hiệu Slà tổng của n số nguyên tố đầu tiên (S1 = 2; S2 = 2 + 3 = 5; S3 = 2 + 3 + 5 = 10; ...).

Chứng minh rằng trong dãy số S1, S2, S3 ... không tồn tại hai số hạng liên tiếp đều là số chính phương.

Xem lời giải »


Câu 4:

Thắng có 25 viên bi xanh và 15 viên bi đỏ. Hỏi tỉ số phần trăm của số bi đỏ và số bi xanh.

Xem lời giải »


Câu 5:

Số a chia cho 5 dư 2, số b chia cho 5 dư 3. Hỏi a + b chia 5 dư mấy?

Xem lời giải »


Câu 6:

Đổi 2 giờ 45 phút = ... giờ (là số thập phân).

Xem lời giải »


Câu 7:

Một số nếu giảm đi 6 lần rồi thêm 25,71 thì được 88,5. Tìm số đó.

Xem lời giải »


Câu 8:

Cho a; b; c thõa mãn: a + b + c = 2000 và 1a+1b+1c=12000  thì một trong ba số a; b; c phải có một số bằng 2000.

Xem lời giải »