Cho lục giác đều ABCDEF và O là tâm của nó. Đẳng thức nào sau đây sai? A. vecto OA + vecto OC + vecto OE = 0; B. vecto BC + vecto FE = vecto AD; C. vecto OA + vecto OC + vecto OB = vec
Câu hỏi:
Cho lục giác đều ABCDEF và O là tâm của nó. Đẳng thức nào sau đây sai?
A. \(\overrightarrow {OA} + \overrightarrow {OC} + \overrightarrow {OE} = 0\);
B. \(\overrightarrow {BC} + \overrightarrow {F{\rm{E}}} = \overrightarrow {A{\rm{D}}} \);
C. \(\overrightarrow {OA} + \overrightarrow {OC} + \overrightarrow {OB} = \overrightarrow {EB} \);
D. \(\overrightarrow {AB} + \overrightarrow {CD} + \overrightarrow {EF} = 0\).
Trả lời:
Lời giải
Đáp án dúng là: D
• Ta có OABC là hình bình hành
Suy ra \(\overrightarrow {OA} + \overrightarrow {OC} + \overrightarrow {OE} = \overrightarrow {OB} + \overrightarrow {OE} = \overrightarrow 0 \) (vì O là trung điểm của BE)
Do đó A đúng
• Ta có: \(\overrightarrow {BC} = \overrightarrow {AO} \) ( ABCO là hình bình hành)
\(\overrightarrow {F{\rm{E}}} = \overrightarrow {O{\rm{D}}} \) (FODE là hình bình hành)
Suy ra \(\overrightarrow {BC} + \overrightarrow {FE} = \overrightarrow {AO} + \overrightarrow {O{\rm{D}}} = \overrightarrow {A{\rm{D}}} \)
Do đó B đúng
• Ta có OABC là hình bình hành
Suy ra \(\overrightarrow {OA} + \overrightarrow {OC} + \overrightarrow {OB} = \overrightarrow {OB} + \overrightarrow {OB} = \overrightarrow {EB} \)
Do đó C đúng
Vậy ta chọn đáp án D.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Nhân ngày 20 tháng 10 một cửa hàng thời trang giảm 30% giá niêm yết cho tất cả sản phẩm. Đặc biệt nếu khách hàng nào có thẻ khách hàng thân thiện của cửa hàng thì được tặng thêm một voucher trị giá bằng 10% số tiền thanh toán tại quầy Thu Ngân:
a) Chị Hoa không có thẻ khách hàng thân thiện của cửa hàng, chị mua một chiếc váy có giá niêm yết là 1 050 000 đồng. Hỏi chị Hoa phải trả bao nhiêu tiền cho chiếc váy đó?
b) Cô Hà có thẻ khách hàng thân thiện, cô mua 1 chiếc túi xách và nhận được một voucher trị giá 91 000 đồng. Hỏi giá niêm yết ban đầu của túi xách là bao nhiêu?
Xem lời giải »
Câu 2:
Tam giác ABC có BC = 21 cm, CA = 17 cm, AB = 10 cm. Tính bán kính R của đường tròn ngoại tiếp tam giác ABC
Xem lời giải »
Câu 3:
Tìm tất cả các số nguyên x, y, z thỏa mãn 3x2 + 6y2 + 2z2 + 3y2z2 – 18x = 6.
Xem lời giải »
Câu 4:
Cho tam giác ABC vuông tại A, đường cao AH. Gọi E, F lần lượt là hình chiếu H trên AB, AC. Chứng minh:
a) \(\frac{{FB}}{{FC}} = \frac{{A{B^3}}}{{A{C^3}}}\);
b) BC2 = 3AH2 + BE2 + CF2;
c) \(BE\sqrt {CH} + CF\sqrt {BH} = AH\sqrt {BC} \).
Xem lời giải »
Câu 5:
Tìm m để các đường thẳng y = (2m – 1)x – 3 và y = mx + m2 – 4m cắt nhau tại một điểm nằm trên trục tung.
Xem lời giải »
Câu 6:
Với 3 chữ số 1, 2, 3 hãy viết tất cả các số có 3 chữ số khác nhau rồi tính tổng của các số đó.
Xem lời giải »
Câu 7:
Cho hình chóp S.ABCD có các cạnh bên bằng a, góc hợp bởi đường cao SH của hình chóp và các mặt bên của hình chóp đều bằng α (α thay đổi). Tìm giá trị lớn nhất của thể tích của S.ABCD.
Xem lời giải »
Câu 8:
Cho tam giác ABC cân tại B. Trên cạnh AB lấy điểm M, trên cạnh BC lấy điểm N sao cho AM = CN. Kẻ BH ⊥ AC tại H.
a) Chứng minh AH = HC.
b) Chứng minh ∆BAN = ∆BCM.
c) Gọi O là giao điểm của AN và CM. Chứng minh 3 điểm B, O, H thẳng hàng.
Xem lời giải »