X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho (O; R) và (O; R') tiếp xúc ngoài tại A. Kẻ dây cung AM của (O) và dây cung AN của (O')


Câu hỏi:

Cho (O; R) và (O; R') tiếp xúc ngoài tại A. Kẻ dây cung AM của (O) và dây cung AN của (O') sao cho AM vuông góc với AN. Chứng minh:

a) OM song song O'N;

b) Xác định vị trí của AM và AN để diện tích tứ giác OMNO' lớn nhất.

Trả lời:

Media VietJack

Xét ∆MAN vuông tại A có:  AMN^+ANM^ = 90° (1)

Và MAO^+NAO'^ = 90° = 180° − MAO^  = 180° − 90° = 90° (2)

Lại có: ∆OMA cân tại O (OA = OM = R)  OAM^=OMA^  (3)

∆O’NA cân tại O (O’A = O’N = R’) O'AN^=O'NA^  (4)

Từ (1), (2), (3) và (4) suy ra: OMN^+MNO'^=OMA^+AMN^+ANM^+O'NA^

OMA^+AMN^+ANM^+O'NA^

OMA^+AMN^+ANM^+O'AN^

OMA^+O'AN^+AMN^+ANM^

= 90° + 90° = 180°

Tứ giác OMNO’ có OMN^+MNO'^=180° nên MN // O’N.

b) Từ O’ kẻ O’H  OM. Khi đó: SOMNO'=O'N+OM.O'H2=R'+R.O'H2R'+R.O'O2=R'+R22

Dấu bằng xảy ra khi và chỉ khi O’H = O’O hay H ≡ O  O’O  MO hoặc O’O  O’N

Vậy tứ giác MNO’O có diện tích lớn nhất là R'+R22   khi O’O  MO hoặc O’O  O’N.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Giải phương trình: (x – 1)(x – 2)(x – 3)(x – 4) = 120.

Xem lời giải »


Câu 2:

Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Chứng minh rằng: BM+CN+AP=0 .

Xem lời giải »


Câu 3:

Cho ABC vuông tại A có AB < AC. Gọi D, E lần lượt là trung điểm của các cạnh BC và AC. Trên tia đối của tia DE lấy điểm F sao cho D là trung điểm của cạnh EF.

a) Chứng minh tứ giác BFCE là hình bình hành.

b) Chứng minh tứ giác BFEA là hình chữ nhật.

c) Gọi K là điểm đối xứng với F qua E. Chứng minh tứ giác AFCK là hình thoi.

d) Vẽ AH BC tại H. Gọi M là trung điểm của HC. Chứng minh FM AM.

Xem lời giải »


Câu 4:

Có 3 bì thư giống nhau lần lượt được đánh số thứ tự từ 1 đến 3 và 3 con tem giống nhau lần lượt đánh số thứ tự từ 1 đến 3. Dán 3 con tem đó vào 3 bì thư sao cho không có bì thư nào không có tem. Tính xác suất để lấy ra được 2 bì thư trong 3 bì thư trên sao cho mỗi bì thư đều có số thứ tự giống với số thứ tự con tem đã dán vào nó

Xem lời giải »


Câu 5:

Tìm góc α ∈ π6;π4;π3;π2  để phương trình cos2x + 3 sin2x – 2cosx = 0 tương đương với phương trình cos(2x – α) = cosx.

Xem lời giải »


Câu 6:

Tính diện tích hình thang vuông ABCD, biết  A^=B^ = 90°, AB = 3cm, AD = 4cm và BCD^  = 135°.

Xem lời giải »


Câu 7:

Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 9cm ; AC=12cm

a) Tính số đo góc B (làm tròn đến độ) và độ dài BH

b) Gọi E, F là hình chiếu của H trên AB, AC. Chứng minh AE.AB = AF.AC.

Xem lời giải »


Câu 8:

Cho tam giác ABC vuông tại A, đường cao AH, biết AB = 9cm, AC = 12cm. Tính BC, AH, HB, HC, diện tích tam giác ABC.

Xem lời giải »