X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho tam giác ABC có trọng tâm G. Gọi A’, B’, C’ lần lượt là trung điểm của các cạnh


Câu hỏi:

Cho tam giác ABC có trọng tâm G. Gọi A’, B’, C’ lần lượt là trung điểm của các cạnh BC, CA, AB. Phép vị tự tâm G biến tam giác ABC thành tam giác A’B’C’ có tỉ số vị tự bằng bao nhiêu?

A. \( - \frac{1}{2}\)

B. \(\frac{1}{2}\)

C. \(\frac{2}{3}\)

D. \( - \frac{1}{3}\).

Trả lời:

Đáp án đúng là: A

Cho tam giác ABC có trọng tâm G. Gọi A’, B’, C’ lần lượt là trung điểm của các cạnh (ảnh 1)

Vì G là trọng tâm tam giác ABC

Nên \(\overrightarrow {GA'} = \frac{{ - 1}}{2}\overrightarrow {GA} ;\overrightarrow {GB'} = \frac{{ - 1}}{2}\overrightarrow {GB} ;\overrightarrow {GC'} = \frac{{ - 1}}{2}\overrightarrow {GC} \)

Suy ra phép vị tự tâm G biến tam giác ABC thành tam giác A’B’C’ có tỉ số vị tự bằng \( - \frac{1}{2}\)

Vậy ta chọn đáp án A.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Hàm số \(F\left( x \right) = {e^{{x^2}}}\) là nguyên hàm của hàm số nào trong các hàm số sau:

Xem lời giải »


Câu 2:

Phân tích đa thức thành nhân tử: x2 + 2xy + y2 – x – y – 12.

Xem lời giải »


Câu 3:

Từ các số 1, 2, 3, 4, 5 có thể lập được bao nhiêu số tự nhiên có 5 chữ số khác nhau? Tính tổng tất cả các số tự nhiên đó.

Xem lời giải »


Câu 4:

Cho ba điểm A(1; 1); B(4; 3) và C (6; –2)

a) Chứng minh ba điểm A, B, C không thẳng hàng.

b) Tìm tọa độ điểm D sao cho tứ giác ABCD là hình thang có AB // CD và CD = 2AB.

Xem lời giải »