Cho tam giác ABC nhọn, các đường cao AD,BE,CF cắt nhau tại H. a) Chứng minh: Tam giác ABE
Câu hỏi:
Cho tam giác ABC nhọn, các đường cao AD,BE,CF cắt nhau tại H.
a) Chứng minh: Tam giác ABE và tam giác AFC đồng dạng, AF. AB = AE . AC.
b) Chứng minh = .
c) Cho AE = 3cm, AB = 6cm. Chứng minh: SABC = 4SAEF.
Trả lời:
a) Tam giác BAC có BE, CF là đường cao nên CF ⊥ AB, BE ⊥ AC
⇒ = = 90°
Xét ∆ABE và ∆AFC có:
chung
= = 90°
⇒ ∆ABE ~ ∆AFC (g.g)
⇒
⇒ AF.AB = AE.AC
b) Từ ⇒
Xét ∆AEF và ∆ABC có:
chung
⇒ ∆AEF ~ ∆ABC (c.g.c)
⇒ = (2 góc tương ứng)
c) Ta có: ∆AEF ~ ∆ABC
⇒
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Giải phương trình: (x – 1)(x – 2)(x – 3)(x – 4) = 120.
Xem lời giải »
Câu 2:
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Chứng minh rằng: .
Xem lời giải »
Câu 3:
Cho ABC vuông tại A có AB < AC. Gọi D, E lần lượt là trung điểm của các cạnh BC và AC. Trên tia đối của tia DE lấy điểm F sao cho D là trung điểm của cạnh EF.
a) Chứng minh tứ giác BFCE là hình bình hành.
b) Chứng minh tứ giác BFEA là hình chữ nhật.
c) Gọi K là điểm đối xứng với F qua E. Chứng minh tứ giác AFCK là hình thoi.
d) Vẽ AH ⊥ BC tại H. Gọi M là trung điểm của HC. Chứng minh FM ⊥ AM.
Xem lời giải »
Câu 4:
Có 3 bì thư giống nhau lần lượt được đánh số thứ tự từ 1 đến 3 và 3 con tem giống nhau lần lượt đánh số thứ tự từ 1 đến 3. Dán 3 con tem đó vào 3 bì thư sao cho không có bì thư nào không có tem. Tính xác suất để lấy ra được 2 bì thư trong 3 bì thư trên sao cho mỗi bì thư đều có số thứ tự giống với số thứ tự con tem đã dán vào nó
Xem lời giải »
Câu 5:
Cho tam giác ABC vuông tại A (AB<AC). Gọi D, E lần lượt là trung điểm của BC, AC. Trên tia đối của tia DE lấy điểm F sao cho D là trung điểm của EF. Vẽ AH vuông góc với BC (H thuộc BC). trên đoạn thẳng HC lấy điểm M sao cho HM = MC. Chứng minh AM vuông góc với FM.
Xem lời giải »
Câu 7:
Cho hình vuông ABCD có M là trung điểm AD N thuộc CD sao cho NC = 2ND tính .
Xem lời giải »
Câu 8:
Cho đường tròn (O) và một điểm A nằm ngoài đường tròn (O). Từ A vẽ hai tiếp tuyến AB, AC của đường tròn (O) (B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc với BC tại H.
b) Từ B vẽ đường kính BD của (O), đường thẳng AD cắt đường tròn (O) tại E (khác D), Chứng minh: AE.AD = AH.AO.
Xem lời giải »