Cho tam giác ABC vuông tại A có AB < AC. Gọi D và E lần lượt là trung điểm của các cạnh AC và BC, kẻ EF ⊥ AB tại F. a) Chứng minh ADEF là hình chữ nhật.
Câu hỏi:
Cho tam giác ABC vuông tại A có AB < AC. Gọi D và E lần lượt là trung điểm của các cạnh AC và BC, kẻ EF ⊥ AB tại F.
a) Chứng minh ADEF là hình chữ nhật.
Trả lời:
a) Xét ∆ABC, có:
DA = DC (gt))
EB = EC (gt)
Suy ra DE là đường trung bình của ∆ABC.
Do đó DE // AB
Mà AB AC (gt)
Suy ra DE AC
Xét tứ giác ADEF có:
Suy ra tứ giác ADEF là hình chữ nhật.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
b) Gọi G là điểm đối xứng với E qua D. Chứng minh tứ giác AECG là hình thoi.
Xem lời giải »
Câu 2:
Cho ∆ABC vuông tại A, có . Gọi M và N lần lượt là trung điểm của BC và AC.
a) Tính .
Xem lời giải »
Câu 3:
b) Gọi E là điểm đối xứng với M qua N. Chứng minh tứ giác AECM là hình thoi.
Xem lời giải »
Câu 4:
Cho tam giác ABC. Gọi M là trung điểm của AB và N là một điểm trên cạnh AC sao cho NA = 2NC. Gọi K là trung điểm của MN.
Phân tích theo và .
Xem lời giải »