X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho tam giác ABC vuông tại A. Đường cao AH. Kẻ phân giác của góc ACH cắt AH tại M, kẻ phân giác của góc BaH cắt BH tại N. Chứng minh rằng MN // AB.


Câu hỏi:

Cho tam giác ABC vuông tại A. Đường cao AH. Kẻ phân giác của ACH^ cắt AH tại M, kẻ phân giác của BAH^ cắt BH tại N. Chứng minh rằng MN // AB.

Trả lời:

Cho tam giác ABC vuông tại A. Đường cao AH. Kẻ phân giác của góc ACH cắt AH tại M, kẻ phân giác của góc BaH cắt BH tại N. Chứng minh rằng MN // AB. (ảnh 1)

Áp dụng định lý đường phân giác trong tam giác ta có:

AMHM=ACHC;    BNHN=ABAH

Xét ΔAHB và ΔCHA có:

AHB^=CHA^=90°

AH chung

BAH^=ACH^ (cùng phụ với CAH^)

Do đó ΔAHB ΔCHA (g.g)

Suy ra ABAH=ACHC

Do đó, AMHM=BNHN

Suy ra MN // AB (định lý Ta-let đảo)

Vậy MN // AB.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Tìm x:

x : 0,25 + x ´ 11 = 24

Xem lời giải »


Câu 2:

Tìm x:

x ´ 8,01 – x : 100 = 38

Xem lời giải »


Câu 3:

Tìm x:

x × 9,8 – x : 0,25 = 18,096

Xem lời giải »


Câu 4:

Tìm x:

0,16 : (x : 3,5) = 2,8

Xem lời giải »


Câu 5:

Giải phương trình: x4 + 2x2 – 3 = 0

Xem lời giải »


Câu 6:

Giải phương trình: x4 – 4x3 – 2x2 + 12x + 5 = 0.

Xem lời giải »