X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho x thỏa mãn 2sin2x - 3 căn bậc hai 6 |sinx + cosx| + 8 = 0. Tính sin2x


Câu hỏi:

Cho x thỏa mãn \(2\sin 2x - 3\sqrt 6 \left| {\sin x + \cos x} \right| + 8 = 0\). Tính sin 2x.

Trả lời:

\(2\sin 2x - 3\sqrt 6 \left| {\sin x + \cos x} \right| + 8 = 0\)

\( \Leftrightarrow 2\sin 2x + 8 = 3\sqrt 6 \left| {\sin x + \cos x} \right|\)

Bình phương hai vế, suy ra phương trình trên tương đương:

(2sin 2x + 8)2 = 54|sin x + cos x|2

Û 4(sin2 2x + 8sin 2x + 16) = 54(sin2 x + 2sin xcos x + cos2 x)

Û 2sin2 2x + 16sin 2x + 32 = 27(1 + sin 2x)

Û 2sin2 2x + 16sin 2x + 32 = 27 + 27sin 2x

Û 2sin2 2x − 11sin 2x + 5 = 0

\( \Leftrightarrow \left[ \begin{array}{l}\sin 2x = 5\;\;\left( {KTM} \right)\\\sin 2x = \frac{1}{2}\;\left( {TM} \right)\end{array} \right.\)

Vậy \(\sin 2x = \frac{1}{2}\).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho a, b, c là các số thực dương thỏa mãn abc = 1. Tìm giá trị lớn nhất của biểu thức \(P = \frac{1}{{a + 2b + 3}} + \frac{1}{{b + 2c + 3}} + \frac{1}{{c + 2a + 3}}\).

Xem lời giải »


Câu 2:

Cho các số thực dương thỏa mãn a + b + c = 1. Tìm giá trị lớn nhất của biểu thức: \(P = \frac{a}{{\sqrt {a + bc} }} + \frac{b}{{\sqrt {b + ca} }} + \frac{c}{{\sqrt {c + ab} }}\).

Xem lời giải »


Câu 3:

Cho hình lăng trụ đều ABC.A'B'C' có cạnh đáy bằng a và cạnh bên bằng 2a. Tính thể tích của khối lăng trụ đã cho.

Xem lời giải »


Câu 4:

Cho hình lăng trụ đều ABC.A'B'C' có cạnh đáy và cạnh bên cùng bằng a. Tính thể tích của khối lăng trụ đó.

Xem lời giải »


Câu 5:

Phương trình \(2\sin 2x - 3\sqrt 6 \left| {\sin x + \cos x} \right| + 8 = 0\) có nghiệm là:

Xem lời giải »


Câu 6:

Cho hàm số y = −x3 + 3x2 + 9x − 2 đạt cực trị tại x1, x2. Tính giá trị của biểu thức S = x12 + x22.

Xem lời giải »


Câu 7:

Cho hàm số y = −x3 + 3x2 + 6x. Hàm số đạt cực trị tại hai điểm x1, x2. Khi đó giá trị của biểu thức S = x12 + x22 bằng:

Xem lời giải »


Câu 8:

Cho hàm số y = (m − 1)x3 + (m − 1)x2 − 2x + 5 với m là tham số. Có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên khoảng (−∞; +∞)?

Xem lời giải »