Cho x thỏa mãn 2sin2x - 3 căn bậc hai 6 |sinx + cosx| + 8 = 0. Tính sin2x
Câu hỏi:
Cho x thỏa mãn \(2\sin 2x - 3\sqrt 6 \left| {\sin x + \cos x} \right| + 8 = 0\). Tính sin 2x.
Trả lời:
\(2\sin 2x - 3\sqrt 6 \left| {\sin x + \cos x} \right| + 8 = 0\)
\( \Leftrightarrow 2\sin 2x + 8 = 3\sqrt 6 \left| {\sin x + \cos x} \right|\)
Bình phương hai vế, suy ra phương trình trên tương đương:
(2sin 2x + 8)2 = 54|sin x + cos x|2
Û 4(sin2 2x + 8sin 2x + 16) = 54(sin2 x + 2sin xcos x + cos2 x)
Û 2sin2 2x + 16sin 2x + 32 = 27(1 + sin 2x)
Û 2sin2 2x + 16sin 2x + 32 = 27 + 27sin 2x
Û 2sin2 2x − 11sin 2x + 5 = 0
\( \Leftrightarrow \left[ \begin{array}{l}\sin 2x = 5\;\;\left( {KTM} \right)\\\sin 2x = \frac{1}{2}\;\left( {TM} \right)\end{array} \right.\)
Vậy \(\sin 2x = \frac{1}{2}\).