X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho x, y, z là các số thực dương và thỏa mãn điều kiện x + y + z = xyz. Tìm giá


Câu hỏi:

Cho x, y, z là các số thực dương và thỏa mãn điều kiện x + y + z = xyz. Tìm giá trị lớn nhất của: \(P = \frac{1}{{\sqrt {1 + {x^2}} }} + \frac{1}{{\sqrt {1 + {y^2}} }} + \frac{1}{{\sqrt {1 + {z^2}} }}.\)

Trả lời:

Vì x, y, z là các số thực dương và thỏa mãn điều kiện x + y + z = xyz

Nên \(\frac{1}{{xy}} + \frac{1}{{yz}} + \frac{1}{{x{\rm{z}}}} = 1\)

Ta có:

\(\frac{1}{{\sqrt {1 + {x^2}} }} = \frac{1}{{\sqrt {\frac{1}{{xy}} + \frac{1}{{yz}} + \frac{1}{{z{\rm{x}}}} + {x^2}} }} \le \frac{1}{{2\sqrt {\frac{{{x^2}y}}{{xyz}}} }} \le \frac{1}{2}\)

\(\frac{1}{{\sqrt {1 + {y^2}} }} = \frac{1}{{\sqrt {\frac{1}{{xy}} + \frac{1}{{yz}} + \frac{1}{{z{\rm{x}}}} + {y^2}} }} \le \frac{1}{{2\sqrt {\frac{{{y^2}z}}{{xyz}}} }} \le \frac{1}{2}\)

\(\frac{1}{{\sqrt {1 + {z^2}} }} = \frac{1}{{\sqrt {\frac{1}{{xy}} + \frac{1}{{yz}} + \frac{1}{{z{\rm{x}}}} + {z^2}} }} \le \frac{1}{{2\sqrt {\frac{{{z^2}x}}{{xyz}}} }} \le \frac{1}{2}\)

Suy ra \(\frac{1}{{\sqrt {1 + {x^2}} }} + \frac{1}{{\sqrt {1 + {y^2}} }} + \frac{1}{{\sqrt {1 + {z^2}} }} \le \frac{1}{2} + \frac{1}{2} + \frac{1}{2}\)

Hay \(P \le \frac{3}{2}\)

Dấu “=” xảy ra khi x = y = z = 1

Vậy giá trị lớn nhất của P là \(\frac{3}{2}\) khi x = y = z = 1.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho lục giác ABCDEF. Có bao nhiêu vectơ khác vectơ \(\overrightarrow 0 \) có điểm đầu và điểm cuối là đỉnh của lục giác.

Xem lời giải »


Câu 2:

Phân tích đa thức thành nhân tử: x2 + 2y2 – 3xy + x – 2y.

Xem lời giải »


Câu 3:

Với a, b là các số thực dương tùy ý thỏa mãn log3a – 2log9b = 2, mệnh đề nào dưới đây đúng?

Xem lời giải »


Câu 4:

Tìm x, biết: x3 – 16x = 0.

Xem lời giải »


Câu 5:

Cho tam giác đều ABC có cạnh bằng a. Hãy tính bán kính đường tròn ngoại tiếp tam giác đó.

Xem lời giải »


Câu 6:

Chứng minh rằng giá trị các biểu thức sau không phụ thuộc vào y

(y – 5)(y + 8) – (y + 4)(y – 1).

Xem lời giải »


Câu 7:

Trong mặt phẳng tọa độ Oxy, cho ba điểm A (1; 0), B (0; 5) và C (–3; –5). Tìm tọa độ điểm M thuộc trục Oy sao cho \(\left| {3\overrightarrow {MA} - 2\overrightarrow {MB} + 4\overrightarrow {MC} } \right|\) đạt giá trị nhỏ nhất?

Xem lời giải »


Câu 8:

Cho hình thang cân ABCD, có đáy nhỏ và đường cao cùng bẳng 2a và \(\widehat {ABC} = 45^\circ \). Tính \(\left| {\overrightarrow {CB} - \overrightarrow {A{\rm{D}}} + \overrightarrow {AC} } \right|\).

Xem lời giải »