X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Gọi x0 là nghiệm dương nhỏ nhất của phương trình 3sin^2 x + 2sin xcos x - cos^2 x = 0


Câu hỏi:

Gọi x0 là nghiệm dương nhỏ nhất của phương trình 3sin2 x + 2sin xcos x − cos2 x = 0. Chọn khẳng định đúng.

A. \({x_0} \in \left( {\frac{\pi }{2};\;\pi } \right)\);

B. \({x_0} \in \left( {\frac{{3\pi }}{2};\;2\pi } \right)\);

C. \({x_0} \in \left( {0;\;\frac{\pi }{2}} \right)\);

D. \({x_0} \in \left( {\pi ;\;\frac{{3\pi }}{2}} \right)\).

Trả lời:

Đáp án đúng là: C

Xét phương trình 3sin2 x + 2sin xcos x − cos2 x = 0 (*)

• cos x = 0 Þ sin2 x = 1 không là nghiệm của phương trình (*)

• cos x ≠ 0. Ta chia 2 vế của phương trình (*) cho cos2 x thì

3sin2 x + 2sin xcos x − cos2 x = 0

\( \Leftrightarrow \frac{{3{{\sin }^2}x}}{{{{\cos }^2}x}} + \frac{{2\sin x}}{{\cos x}} - 1 = 0\)

Û 3tan2 x + 2tan x − 1 = 0

\[ \Leftrightarrow \left[ \begin{array}{l}\tan x = - 1\\\tan x = \frac{1}{3}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = - \frac{\pi }{4} + k\pi \\x = \arctan \frac{1}{3} + k\pi \end{array} \right.\;\left( {k \in \mathbb{Z}} \right)\]

Nghiệm nguyên dương nhỏ nhất của phương trình là \(x = \arctan \frac{1}{3} \in \left( {0;\;\frac{\pi }{2}} \right)\).

Chọn đáp án C.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho a, b, c là các số thực dương thỏa mãn abc = 1. Tìm giá trị lớn nhất của biểu thức \(P = \frac{1}{{a + 2b + 3}} + \frac{1}{{b + 2c + 3}} + \frac{1}{{c + 2a + 3}}\).

Xem lời giải »


Câu 2:

Cho các số thực dương thỏa mãn a + b + c = 1. Tìm giá trị lớn nhất của biểu thức: \(P = \frac{a}{{\sqrt {a + bc} }} + \frac{b}{{\sqrt {b + ca} }} + \frac{c}{{\sqrt {c + ab} }}\).

Xem lời giải »


Câu 3:

Cho hình lăng trụ đều ABC.A'B'C' có cạnh đáy bằng a và cạnh bên bằng 2a. Tính thể tích của khối lăng trụ đã cho.

Xem lời giải »


Câu 4:

Cho hình lăng trụ đều ABC.A'B'C' có cạnh đáy và cạnh bên cùng bằng a. Tính thể tích của khối lăng trụ đó.

Xem lời giải »


Câu 5:

Cho x thỏa mãn \(2\sin 2x - 3\sqrt 6 \left| {\sin x + \cos x} \right| + 8 = 0\). Tính sin 2x.

Xem lời giải »


Câu 6:

Phương trình \(2\sin 2x - 3\sqrt 6 \left| {\sin x + \cos x} \right| + 8 = 0\) có nghiệm là:

Xem lời giải »


Câu 7:

Cho hàm số y = −x3 + 3x2 + 9x − 2 đạt cực trị tại x1, x2. Tính giá trị của biểu thức S = x12 + x22.

Xem lời giải »


Câu 8:

Cho hàm số y = −x3 + 3x2 + 6x. Hàm số đạt cực trị tại hai điểm x1, x2. Khi đó giá trị của biểu thức S = x12 + x22 bằng:

Xem lời giải »