Tìm giá trị nhỏ nhất của A = a^2 – 4ab + 5b^2 + 10a – 22b + 28.
Câu hỏi:
Tìm giá trị nhỏ nhất của A = a2 – 4ab + 5b2 + 10a – 22b + 28.
Trả lời:
A = a2 – 4ab + 5b2 + 10a – 22b + 28
A = (a2 – 4ab + 4b2) + b2 – 2b + 1 + 10a – 22b + 27
A = (a – 2b)2 + (b – 1)2 + 10(a – 2b) + 27
A = (a – 2b + 5)2 + (b – 1)2 + 2
Vì (a – 2b + 5)2 + (b – 1)2 ≥ 0 nên A ≥ 2
Vậy giá trị nhỏ nhất của A là 2 khi:
hay .