Cho A = 1 + 2 + 22 + 23 + ... + 22010 + 22011. Hỏi số A + 8 có phải là số chính phương không?
Câu hỏi:
Cho A = 1 + 2 + 22 + 23 + ... + 22010 + 22011. Hỏi số A + 8 có phải là số chính phương không?
Trả lời:
Ta có :
A = 1 + 2 + 22 + 23 + ... + 22010 + 22011
⇒ A = 20 + 21 + + 22 + 23 + ... + 22010 + 22011
A có tất cả (2011 − 0) : 1 + 1 = 2012 số hạng. Mà 2012 ⋮ 2
⇒ Ta sẽ gộp 2 số hạng của A là 1 tổng, ta có:
A = (20 + 21) + (22 + 23) + ... + ( 22010 + 22011)
⇒ A = 1 ∙ (20 + 21) + 22 ∙ (20 + 21) + ... + 22010 ∙ (20 + 21)
⇒ A = (1 + 22 + ... + 22010) ∙ (20 + 21)
⇒ A = (1 + 22 + ... + 22010) ∙ 3
⇒ A + 8 = (1 + 22 + ... + 22010) ∙ 3 + 8
Do 3 ⋮ 3
⇒ (1 + 22 + ... + 22010) ∙ 3 ⋮ 3
⇒ (1 + 22 + ... + 22010) ∙ 3 ≡ 0 (mod 3)
Mà 8 ≡ 2 (mod 3)
⇒ (1 + 22 + ... + 22010) ∙ 3 + 8 ≡ 0 + 2 = 2 (mod 3)
⇒ (1 + 22 + ... + 22010) ∙ 3 + 8 chia 3 dư 2
⇒ (1 + 22 + ... + 22010) ∙ 3 + 8 = 3k + 2
⇒ A = 3k + 2
Mà số chính phương chỉ có thể có dạng 3k hoặc 3k + 1
⇒ A không phải là số chính phương
Vậy A không phải là số chính phương.