X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho đa thức p(x) = ax2 + bx + c (với a, b, c là các số hữu tỉ). Biết P(0), P(1), P(2) là các số nguyên. Chứng minh P(x) có giá trị nguyên với mọi x nguyên.


Câu hỏi:

Cho đa thức p(x) = ax2 + bx + c (với a, b, c là các số hữu tỉ). Biết P(0), P(1), P(2) là các số nguyên. Chứng minh P(x) có giá trị nguyên với mọi x nguyên.

Trả lời:

Lời giải

P(0) = c mà P(0) nguyên

Þ c nguyên

P(1) = a + b + c mà P(1) nguyên

Þ a + b + c nguyên mà c nguyên

Þ a + b nguyên

P(2) = 4a + 2b + c mà P(2) nguyên

Þ 4a + 2b + c nguyên mà c nguyên

Þ 4a + 2b nguyên hay 2a + b nguyên

Þ 2a + b − (a + b) nguyên

Þ a nguyên mà a + b nguyên

Þ b nguyên

Do đó a, b, c nguyên

Vậy P(x) có giá trị nguyên với mọi x nguyên.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Tìm x:

x : 0,25 + x ´ 11 = 24

Xem lời giải »


Câu 2:

Tìm x:

x ´ 8,01 – x : 100 = 38

Xem lời giải »


Câu 3:

Cho tam giác ABC vuông tại A. Đường cao AH. Kẻ phân giác của ACH^ cắt AH tại M, kẻ phân giác của BAH^ cắt BH tại N. Chứng minh rằng MN // AB.

Xem lời giải »


Câu 4:

Tìm x:

x × 9,8 – x : 0,25 = 18,096

Xem lời giải »


Câu 5:

Cho tam giác ABC có A’, B’, C’ lần lượt là trung điềm của các cạnh BC, CA, AB. Chứng minh DB.

Xem lời giải »


Câu 6:

Cho tam giác ABC, M điểm bất kì, G là trọng tâm. Chứng minh MA2 + MB2 + MC2 = 3MG2 + GA2 + GB2 + GC2.

Xem lời giải »


Câu 7:

Cho nửa đường tròn đường kính AB cố định. C là một điểm trên nửa đường tròn, trên dây AC kéo dài lấy điểm D sao cho CD = CB. Tìm quỹ tích các điểm D khi C chạy trên nửa đường tròn đã cho.

Xem lời giải »


Câu 8:

Cho nửa đường tròn đường kính AB cố định. C là một điểm trên nửa đường tròn, trên dây AC kéo dài lấy điểm D sao cho CD = CB. Trên tia CA lấy điểm E sao cho CE = CB. Tìm quỹ tích các điểm E khi C chạy trên nửa đường tròn đã cho.

Xem lời giải »