Cho đường tròn (O,R) cố định. Từ M nằm ngoài đường tròn (O) kẻ 2 tiếp tuyến MA,MB (A,B là các tiếp điểm)
Câu hỏi:
Cho đường tròn (O,R) cố định. Từ M nằm ngoài đường tròn (O) kẻ 2 tiếp tuyến MA,MB (A,B là các tiếp điểm). Gọi H là giao điểm của OM, AB.
a) Chứng minh: OM vuông góc với AB và OH.OM = R2.
b) Từ M kẻ cát tuyến MNP với đường tròn (O) (N nằm giữa M,P), gọi I là trung điểm NP (I khác O). Chứng minh: A, M, O, I thuộc một đường tròn và tìm tâm của đường tròn đó.
c) Qua N kẻ tiếp tuyến với đường tròn (O), cắt MA, MB theo thứ tự C,D. Biết MA = 5cm, tính chu vi tam giác MCD.
d) Qua O kẻ đường thẳng d vuông góc với OM, cắt MA, MB lần lượt tại E, F. Xác định vị trí của điểm M để diện tích tam giác MEF nhỏ nhất.
Trả lời:
a) Ta có: MA, MB là tiếp tuyến của (O)
Suy ra: MO ⊥ AB tại H.
Ta có: MA ⊥ AO, AH ⊥ MO
⇒ OH.OM = OA2 = R2
b) Do I là trung điểm NP ⇒ OI ⊥ NP
Mà MA ⊥ OA, MB ⊥ OB
⇒ M, A, I, O, B ∈ đường tròn đường kính OM
⇒ Tâm của đường tròn là trung điểm MO
c) Ta có : CN, CA là tiếp tuyến của (O) ⇒ CN = CA
Tương tự:
DN = DB
⇒ PMCD = MC + CD + DM = MC + CN + ND + DM
= MC + AC + DB + DM = MA + MB = 2MA = 10.
d) Ta có :
SMEF =
Mà OA ⊥ ME, MO ⊥ OE
⇒
⇒ OM.OE ≥ 2OA2 = 2R2
⇒ SMEF ≥ = R2
Dấu = xảy ra khi OE = OM ⇒ ΔOEM vuông cân tại O
⇒ ⇒ ΔAMO vuông cân tại A
⇒ MO = OA =
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Giải phương trình: (x – 1)(x – 2)(x – 3)(x – 4) = 120.
Xem lời giải »
Câu 2:
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Chứng minh rằng: .
Xem lời giải »
Câu 3:
Cho ABC vuông tại A có AB < AC. Gọi D, E lần lượt là trung điểm của các cạnh BC và AC. Trên tia đối của tia DE lấy điểm F sao cho D là trung điểm của cạnh EF.
a) Chứng minh tứ giác BFCE là hình bình hành.
b) Chứng minh tứ giác BFEA là hình chữ nhật.
c) Gọi K là điểm đối xứng với F qua E. Chứng minh tứ giác AFCK là hình thoi.
d) Vẽ AH ⊥ BC tại H. Gọi M là trung điểm của HC. Chứng minh FM ⊥ AM.
Xem lời giải »
Câu 4:
Có 3 bì thư giống nhau lần lượt được đánh số thứ tự từ 1 đến 3 và 3 con tem giống nhau lần lượt đánh số thứ tự từ 1 đến 3. Dán 3 con tem đó vào 3 bì thư sao cho không có bì thư nào không có tem. Tính xác suất để lấy ra được 2 bì thư trong 3 bì thư trên sao cho mỗi bì thư đều có số thứ tự giống với số thứ tự con tem đã dán vào nó
Xem lời giải »
Câu 5:
Bảng giá cước gọi quốc tế của công ty viễn thông A được cho bởi bảng sau:
Thời gian gọi (phút)
|
Giá cước điện thoại (đồng/phút)
|
Không quá 8 phút
|
6 500
|
Từ phút thứ 9 đến phút thứ 15
|
6 000
|
Từ phút thứ 16 đến phút thứ 25
|
5 500
|
Từ phút thứ 26 trở đi
|
5 000
|
Gọi T (đồng) là số tiền khách hàng phải trả khi gọi quốc tế trong t phút. Lập hàm số của T theo t.
Xem lời giải »
Câu 6:
Chứng minh rằng giá trị của biểu thức sau không phụ thuộc vào giá trị của biến: (x – 5)(2x + 3) – 2x(x – 3) + x + 7.
Xem lời giải »
Câu 7:
Hình bình hành ABCD có AB = a, BC = a và . Khi đó hình bình hành có diện tích bằng bao nhiêu?
Xem lời giải »
Câu 8:
Tổng tất cả các hệ số trong khai triển (x + y)20 là bao nhiêu khi x = y = 1.
Xem lời giải »