Cho đường tròn (O;R) và điểm A cố định ngoài đường tròn. Vẽ đường thẳng d vuông
Câu hỏi:
Cho đường tròn (O;R) và điểm A cố định ngoài đường tròn. Vẽ đường thẳng d vuông góc với OA tại A. Trên d lấy M. Qua M kẻ tiếp tuyến ME, MF với (O). Nối EF cắt OM tại H, cắt OA tại B. Chứng minh:
a) Tứ giác ABHM nội tiếp.
b) OA.OB = OH.OM = R2.
c) Tâm I của đường tròn nội tiếp tam giác MEF thuộc một đường tròn cố định khi M di chuyển trên d.
d) Tìm vị trí của M để diện tích tam giác HBO lớn nhất.
Trả lời:
a) Do ME, MF là tiếp tuyến với đường tròn suy ra EF ⊥ OM
Tứ giác ABHM có \(\widehat A = \widehat H = 90^\circ \) nên tứ giác này nội tiếp đường tròn bán kính MB.
b) Xét ΔOHB và ΔOAM có:
Chung \(\widehat O\)
\(\widehat {OHB} = \widehat {OAM} = 90^\circ \)
⇒ ΔOHB ∽ ΔOAM (g.g)
⇒ \(\frac{{OH}}{{OA}} = \frac{{OB}}{{AM}}\)
⇒ OA.OB = OH.OM(1)
Tương tự: ΔOHE ∽ ΔOEM (g.g)
⇒ \(\frac{{OH}}{{OE}} = \frac{{OE}}{{OM}}\)
⇒ OH.OM = OE2 = R2
⇒ OH.OM = R2 (2)
Từ (1) và (2) suy ra: OA.OB = OH.OM = R2
c) Gọi I là giao điểm của OM với đường tròn (O). Nối FI.
Do suy ra \(\widehat {MFI} = \widehat {EFI}\)
Suy ra FI là phân giác của góc \(\widehat {MFE}\)
Lại có MI là phân giác của góc \(\widehat {EMF}\)
Do đó I là giao điểm của đường phân giác trong của tam giác MEF
⇒ I là tâm đường tròn nội tiếp tam giác MEF.
Mà I thuộc đường tròn (O) cố định. Suy ra đpcm.
d) Diện tích tam giác HBO: SHBO = \(\frac{1}{2}HO.HB\)
Xét ΔOHB ∽ ΔOAM (g.g)
⇒ \(\frac{{HB}}{{AM}} = \frac{{OB}}{{OM}}\)
⇒ HB.OM = AM.OB (3)
Có: OH.OM = R2(4)
Nhân (3) và (4) vế với vế ta được: OH.HB.OM2 = R2.AM.OB = R2 . AM . \(\frac{{{R^2}}}{{OA}}\)
⇒ OH.HB = \({R^4}.\frac{{AM}}{{OA.O{M^2}}} = {R^4}.\frac{{AM}}{{OA.\left( {O{A^2} + A{M^2}} \right)}}\)
Áp dụng BĐT Cô si với OA và AM ta có: \(O{A^2} + A{M^2} \ge 2\sqrt {O{A^2}.A{M^2}} = 2.OA.AM\)
Dấu "=" xảy ra khi: OA = AM
⇒ OH.HB ≤ \({R^2}.\frac{{AM}}{{OA.2.OA.AM}} = \frac{{{R^2}}}{{4.O{A^2}}}\)
Suy ra: Smax = \(\frac{{{R^2}}}{{4.O{A^2}}}\) khi OA = AM.