Cho đường tròn (O ; R) và một điểm A sao cho OA = 2R vẽ các tiếp tuyến AB, AC với (O;R)
Câu hỏi:
Cho đường tròn (O ; R) và một điểm A sao cho OA = 2R vẽ các tiếp tuyến AB, AC với (O;R) , B và C là các tiếp điểm. Vẽ đường kính BOD.
a) Chứng minh 4 điểm A, B, O, C cùng thuộc một đường tròn.
b) Chứng minh DC // OA.
c) Đường trung trực của BD cắt AC và CD lần lượt tại S và E. Chứng minh OCEA là hình thang cân.
Trả lời:
a) AB, AC là tiếp tuyến của (O) nên = 90°
⇒ B, C cùng thuộc đường tròn đường kính OA
⇒ A, B, C, O cùng thuộc đường tròn đường kính OA
b) AB, AC là tiếp tuyến của (O) ⇒ AB = AC mà OB = OC = R
⇒ OA là trung trực BC ⇒ OA⊥ BC
ΔBCD nội tiếp (O;R) đường kính BD ⇒ = 90° ⇒ DC ⊥ BC
⇒ CD // OA ( cùng vuông góc với BC)
c) DC // OA ⇒ CE // OA ⇒ OCEA là hình thang
Có: (cùng phụ với )
Mà: (cùng phụ với )
Nên:
Xét ΔODE và Δ BOA có:
= 90°
OB = OD
⇒ ΔODE = Δ BOA (g–c–g)
⇒ OE = AB ⇒ OE = AC
⇒ OCEA là hình thang cân (đpcm).
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Giải phương trình: (x – 1)(x – 2)(x – 3)(x – 4) = 120.
Xem lời giải »
Câu 2:
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Chứng minh rằng: .
Xem lời giải »
Câu 3:
Cho ABC vuông tại A có AB < AC. Gọi D, E lần lượt là trung điểm của các cạnh BC và AC. Trên tia đối của tia DE lấy điểm F sao cho D là trung điểm của cạnh EF.
a) Chứng minh tứ giác BFCE là hình bình hành.
b) Chứng minh tứ giác BFEA là hình chữ nhật.
c) Gọi K là điểm đối xứng với F qua E. Chứng minh tứ giác AFCK là hình thoi.
d) Vẽ AH ⊥ BC tại H. Gọi M là trung điểm của HC. Chứng minh FM ⊥ AM.
Xem lời giải »
Câu 4:
Có 3 bì thư giống nhau lần lượt được đánh số thứ tự từ 1 đến 3 và 3 con tem giống nhau lần lượt đánh số thứ tự từ 1 đến 3. Dán 3 con tem đó vào 3 bì thư sao cho không có bì thư nào không có tem. Tính xác suất để lấy ra được 2 bì thư trong 3 bì thư trên sao cho mỗi bì thư đều có số thứ tự giống với số thứ tự con tem đã dán vào nó
Xem lời giải »
Câu 8:
Chứng minh rằng: A = n3 + (n+1)3 + (n+2)3 chia hết cho 9 với mọi n thuộc ℕ.
Xem lời giải »