Cho hình bình hành ABCD. Các đường phân giác của các góc lần lượt cắt nhau tại E, F, G, H
Câu hỏi:
Cho hình bình hành ABCD. Các đường phân giác của các góc lần lượt cắt nhau tại E, F, G, H. Chứng minh: EFGH là hình chữ nhật.
Trả lời:
a) Gọi M, N, P, Q lần lượt là giao điểm của các đường phân giác với các cạnh của hình bình hành.
Ta có: (DN là phân giác )
(BQ là phân giác )
Mà (hai góc đối của hình bình hành ABCD)
⇒
Vì ABCD là hình bình hành AB // CD ⇒ (hai góc so le trong)
⇒
Mà hai góc ở vị trí đồng vị
⇒ DN // BQ hay HE // GF
Ta có: (AP là phân giác )
(CM là phân giác )
Mà (hai góc đối của hình bình hành ABCD)
⇒
Vì ABCD là hình bình hành AB // CD ⇒ (hai góc so le trong)
⇒
⇒ AP //DM hay GH // EF
Xét tứ giác EFGH có:
HE // GF (cmt)
GH // EF (cmt)
⇒ EFGH là hình bình hành (1)
Xét tam giác BFC, có:
Mà = 180°(hai góc trong cùng phía bù nhau)
⇒ ⇒
⇒ = 90°(2)
Từ (1) và (2) suy ra tứ giác EFGH là hình chữ nhật.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Giải phương trình: (x – 1)(x – 2)(x – 3)(x – 4) = 120.
Xem lời giải »
Câu 2:
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Chứng minh rằng: .
Xem lời giải »
Câu 3:
Cho ABC vuông tại A có AB < AC. Gọi D, E lần lượt là trung điểm của các cạnh BC và AC. Trên tia đối của tia DE lấy điểm F sao cho D là trung điểm của cạnh EF.
a) Chứng minh tứ giác BFCE là hình bình hành.
b) Chứng minh tứ giác BFEA là hình chữ nhật.
c) Gọi K là điểm đối xứng với F qua E. Chứng minh tứ giác AFCK là hình thoi.
d) Vẽ AH ⊥ BC tại H. Gọi M là trung điểm của HC. Chứng minh FM ⊥ AM.
Xem lời giải »
Câu 4:
Có 3 bì thư giống nhau lần lượt được đánh số thứ tự từ 1 đến 3 và 3 con tem giống nhau lần lượt đánh số thứ tự từ 1 đến 3. Dán 3 con tem đó vào 3 bì thư sao cho không có bì thư nào không có tem. Tính xác suất để lấy ra được 2 bì thư trong 3 bì thư trên sao cho mỗi bì thư đều có số thứ tự giống với số thứ tự con tem đã dán vào nó
Xem lời giải »
Câu 7:
Có bao nhiêu cách xếp 3 quả bóng giống nhau vào 5 chỗ khác nhau (mỗi chỗ xếp không quá một quả bóng)?
Xem lời giải »
Câu 8:
Cho hình chữ nhật ABCD có AB = 4cm, BC = 3cm. Kẻ BH vuông góc với AC tại H, tia BH cắt AD tại E.
1) Tính BH, góc BAC.
2) Chứng minh: BH.BE = CD2.
Xem lời giải »