Phân tích đa thức thành nhân tử: 81x^4 + 4y^4.
Câu hỏi:
Phân tích đa thức thành nhân tử: 81x4 + 4y4.
Trả lời:
81x4 + 4y4
= (9x2)2 + (2y2)2
= (9x2)2 + (2y2)2 + 2.9x2.2y2 – 36x2y2
= (9x2 + 2y2)2 – (6xy)2
= (9x2 + 2y2 – 6xy)(9x2 + 2y2 + 6xy).
Câu hỏi:
Phân tích đa thức thành nhân tử: 81x4 + 4y4.
Trả lời:
81x4 + 4y4
= (9x2)2 + (2y2)2
= (9x2)2 + (2y2)2 + 2.9x2.2y2 – 36x2y2
= (9x2 + 2y2)2 – (6xy)2
= (9x2 + 2y2 – 6xy)(9x2 + 2y2 + 6xy).
Câu 2:
Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Chứng minh rằng: .
Câu 3:
Cho ABC vuông tại A có AB < AC. Gọi D, E lần lượt là trung điểm của các cạnh BC và AC. Trên tia đối của tia DE lấy điểm F sao cho D là trung điểm của cạnh EF.
a) Chứng minh tứ giác BFCE là hình bình hành.
b) Chứng minh tứ giác BFEA là hình chữ nhật.
c) Gọi K là điểm đối xứng với F qua E. Chứng minh tứ giác AFCK là hình thoi.
d) Vẽ AH ⊥ BC tại H. Gọi M là trung điểm của HC. Chứng minh FM ⊥ AM.
Câu 4:
Câu 6:
Có bao nhiêu cách xếp 3 quả bóng giống nhau vào 5 chỗ khác nhau (mỗi chỗ xếp không quá một quả bóng)?
Câu 7:
Cho hình chữ nhật ABCD có AB = 4cm, BC = 3cm. Kẻ BH vuông góc với AC tại H, tia BH cắt AD tại E.
1) Tính BH, góc BAC.
2) Chứng minh: BH.BE = CD2.
Câu 8:
Hai người khách du lịch xuất phát đồng thời từ hai thành phố cách nhau 38 km. Họ đi ngược chiều và gặp nhau sau 4 giờ.Hỏi vận tốc của mỗi người biết rằng đến khi gặp nhau, người thứ nhất đi được nhiều hơn người thứ hai là 2 km.