X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung


Câu hỏi:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của SA, SB.

a) Tìm giao tuyến của (SAC) và (SBD)

b) Tìm giao điểm DN với (SAC)

c) Chứng minh MN // (SCD).

Trả lời:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung (ảnh 1)

a) Gọi giao điểm của AC và DB là O

Vì O AC (SAC) nên O (SAC)

O BD (SBD) nên O (SBD)

Suy ra O (SAC) ∩ (SBD)

Mà S (SAC) ∩ (SBD)

Suy ra SO (SAC) ∩ (SBD)

b) Gọi I là giao điểm của SO và DN

Ta có:

DN (SBD)

SO = (SAC) ∩ (SBD)

Suy ra I = DN ∩ (SAC)

c) Xét tam giác SAB có M, N lần lượt là trung điểm của SA, SB

Suy ra MN là đường trung bình

Do đó MN // AB

Mà AB // CD (vì ABCD là hình bình hành)

Suy ra MN // CD

Lại có CD (SCD)

Do đó MN // (SCD)

Vậy MN // (SCD).

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho hàm số f(x) có bảng biến thiên như sau

Có bao nhiêu giá trị nguyên của tham số m để phương trình 3f(x^2 - 4x) = m có ít nhất  (ảnh 1)

Có bao nhiêu giá trị nguyên của tham số m để phương trình 3f(x2 – 4x) = m có ít nhất ba nghiệm thực phân biệt thuộc khoảng (0; +∞)?

Xem lời giải »


Câu 2:

Tìm m để \(y = \frac{{{x^2} + m{\rm{x}}}}{{1 - x}}\) có cực trị và khoảng cách giữa 2 điểm cực trị bằng 10.

Xem lời giải »


Câu 3:

Phân tích đa thức thành nhân tử (x + y)3 – ( x – y)3.

Xem lời giải »


Câu 4:

Phân tích đa thức sau thành nhân tử: x2 + 6x + 9.

Xem lời giải »


Câu 5:

Mệnh đề nào sau đây đúng ?

Xem lời giải »


Câu 6:

Phân tích đa thức sau thành nhân tử bằng phương pháp nhóm hạng tử:

x2 – 2x – 4y2 – 4y.

Xem lời giải »


Câu 7:

Phân tích đa thức thành nhân tử: x3 – 7x – 6.

Xem lời giải »


Câu 8:

Chứng minh \(\frac{1}{{1 + {a^3}}} + \frac{1}{{1 + {b^3}}} + \frac{1}{{1 + {c^3}}} \ge \frac{3}{{1 + abc}}\) với a, b, c ≥ 1.

Xem lời giải »