Cho hình chữ nhật ABCD có AB = 2AD. Gọi E, F theo thứ tự là trung diểm của AB, CD. Gọi M là giao điểm của AF và DE, N là giao điểm của BF và CE. Tứ giác ADFE là hình gì? Vì sao?
Câu hỏi:
Cho hình chữ nhật ABCD có AB = 2AD. Gọi E, F theo thứ tự là trung diểm của AB, CD. Gọi M là giao điểm của AF và DE, N là giao điểm của BF và CE. Tứ giác ADFE là hình gì? Vì sao?
Trả lời:
E, F là trung điểm AB, CD
Ta có: AB = CD hay 2AD = 2BC
Þ AE = EB = BC = CF = FD = DA.
Tứ giác ADFE có AE // DF, AE = DF
Þ ADFE là hình bình hành.
Hình bình hành ADFE có
Þ ADFE là hình chữ nhật.
Hình chữ nhật ADFE là hình chữ nhật có AE = AD
Þ ADFE là hình vuông
Vậy ADFE là hình vuông.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 3:
Cho tam giác ABC vuông tại A. Đường cao AH. Kẻ phân giác của cắt AH tại M, kẻ phân giác của cắt BH tại N. Chứng minh rằng MN // AB.
Xem lời giải »
Câu 5:
Cho hình chữ nhật ABCD có AB = 2AD. Gọi E, F theo thứ tự là trung diểm của AB, CD. Gọi M là giao điểm của AF và DE, N là giao điểm của BF và CE. Tứ giác EMFN là hình gì? Vì sao?
Xem lời giải »
Câu 6:
Cho hình vẽ sau, biết đường thẳng m // n và x ^ m. Chứng minh: x ^ n.
Xem lời giải »
Câu 7:
Cho nửa đường tròn tâm O đường kính AB. Ax là tia tiếp tuyến của nửa đường tròn (Ax và nửa đường tròn cùng thuộc một nửa mặt phẳng bờ AB), từ điểm C trên nửa đường tròn (C khác A, B) vẽ tiếp tuyến CM cắt Ax tại M, hạ CH vuông góc với AB, MB cắt (O) tại Q và cắt CH tại N. Chứng minh MA2 = MQ . MB
Xem lời giải »
Câu 8:
Cho tam giác ABC cân tại A, I là giao điểm các đường phân giác trong tam giác. Chứng minh AC là tiếp tuyến của đường tròn tâm O ngoại tiếp tam giác BIC.
Xem lời giải »