X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho tam giác ABC có diện tích là 480cm^2. M là trung điểm của cạnh BC


Câu hỏi:

Cho tam giác ABC có diện tích là 480cm2. M là trung điểm của cạnh BC. N là trung điểm của AM. Nối BN và kéo dài cắt AC tại I.

a) Tính diện tích tam giác BNM.

b) So sánh AI và IC.

Trả lời:

Media VietJack

a) SABM 12 SABC do chung chiều cao từ A, đáy BM = 12 BC

Do đó SABM = 480 : 2 = 240 (cm2)

SBNM 12 SABM do chung chiều cao từ B, đáy MN =  12AM

Do đó SBNM = 240 : 2 = 120 (cm2)

b) Nối C với N

SABN = SBNM do chung chiều cao từ B, đáy AN = MN

SMNC = SBNM do chung chiều cao từ C, đáy BM = MC

SCBN = SMNC + SBNM = 2SBNM 

Do đó chiều cao từ C xuống đáy NB của ∆CNB bằng hai lần chiều cao từ B xuống NB của ∆ABN.

Đó cũng là chiều cao của ∆AIN và ∆CIN, đáy IN chung nên SCIN = 2SAIN

Hai tam giác này lại có chung chiều cao từ N xuống AC nên đáy AI = 12 IC.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Giải phương trình: (x – 1)(x – 2)(x – 3)(x – 4) = 120.

Xem lời giải »


Câu 2:

Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Chứng minh rằng: BM+CN+AP=0 .

Xem lời giải »


Câu 3:

Cho ABC vuông tại A có AB < AC. Gọi D, E lần lượt là trung điểm của các cạnh BC và AC. Trên tia đối của tia DE lấy điểm F sao cho D là trung điểm của cạnh EF.

a) Chứng minh tứ giác BFCE là hình bình hành.

b) Chứng minh tứ giác BFEA là hình chữ nhật.

c) Gọi K là điểm đối xứng với F qua E. Chứng minh tứ giác AFCK là hình thoi.

d) Vẽ AH BC tại H. Gọi M là trung điểm của HC. Chứng minh FM AM.

Xem lời giải »


Câu 4:

Có 3 bì thư giống nhau lần lượt được đánh số thứ tự từ 1 đến 3 và 3 con tem giống nhau lần lượt đánh số thứ tự từ 1 đến 3. Dán 3 con tem đó vào 3 bì thư sao cho không có bì thư nào không có tem. Tính xác suất để lấy ra được 2 bì thư trong 3 bì thư trên sao cho mỗi bì thư đều có số thứ tự giống với số thứ tự con tem đã dán vào nó

Xem lời giải »


Câu 5:

Hỗn số 435  được viết dưới dạng số thập phân là?

Xem lời giải »


Câu 6:

Cho nửa đường tròn tâm O đường kính AB =2R và điểm M nằm trên đường tròn đó (M ≠ A, B) tiếp tuyến tại điểm M của nửa đường tròn tâm O cắt các tiếp tuyến tại A và B. Lần lượt tại các điểm C, D. Gọi E là giao điểm của OC với AM, gọi F là giao điểm của OD và BM.

a) Chứng minh CD = AC + BD.

b) Chứng minh EF vuông góc BD và EF là tiếp tuyến đường tròn đi qua các điểm M, D, F.

Xem lời giải »


Câu 7:

Cho đường tròn tâm O, điểm M bất kỳ bên ngoài đường tròn. Vẽ các tiếp tuyến MA và MB với đường tròn. Vẽ đường kính AC. Chứng minh 4 điểm A, B, C, O cùng nằm trên 1 tam giác vuông.

Xem lời giải »


Câu 8:

Chứng minh giá trị của biểu thức sau không phụ thuộc vào biến x.

A = x(3x2 – x + 5) – (2x3 + 3x – 25) – x(x2 – x + 2).

B = x(2x + 1) – x2(x + 2) + (x3 – x + 10).

Xem lời giải »