X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho tam giác ABC có hai trung tuyến BD và CE cắt nhau tại G. Gọi M ,N theo thứ tự là trung điểm của BG


Câu hỏi:

Cho tam giác ABC có hai trung tuyến BD và CE cắt nhau tại G. Gọi M ,N theo thứ tự là trung điểm của BG và CG.

a, Chứng minh tứ giác MNDE là hình bình hành .

b, Tìm điều kiện của tam giác ABC để MNDE là hình chữ nhật.

Trả lời:

Media VietJack

Xét tam giác ABC có AE = EB (gt), AD = DC (gt)

ED là đường trung bình của tam giác ABC

 ED // BC và ED = 12 BC

Xét tam giác BGC có BM = MG (gt), CN = NG (gt)

MN là đường trung bình của tam giác BGC

MN // BC và MN = 12 BC

Có MN // BC mà ED // BC  MN//ED

MN = 12 BC, ED = 12 BC MN = ED

Tứ giác MNDE có: MN // ED, MN = ED

 MNDE là hình bình hành

b, Hình bình hành MNDE là hình chữ nhật

 NDE^ = 90°

Nếu NDE^  = 90°

 BD vừa là trung tuyến vừa là đường cao của tam giác ABC ứng với AC

Tam giác ABC cân tại B

Vậy, để hình bình hành MNDE là hình chữ nhật, tam giác ABC phải cân tại B.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Giải phương trình: (x – 1)(x – 2)(x – 3)(x – 4) = 120.

Xem lời giải »


Câu 2:

Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Chứng minh rằng: BM+CN+AP=0 .

Xem lời giải »


Câu 3:

Cho ABC vuông tại A có AB < AC. Gọi D, E lần lượt là trung điểm của các cạnh BC và AC. Trên tia đối của tia DE lấy điểm F sao cho D là trung điểm của cạnh EF.

a) Chứng minh tứ giác BFCE là hình bình hành.

b) Chứng minh tứ giác BFEA là hình chữ nhật.

c) Gọi K là điểm đối xứng với F qua E. Chứng minh tứ giác AFCK là hình thoi.

d) Vẽ AH BC tại H. Gọi M là trung điểm của HC. Chứng minh FM AM.

Xem lời giải »


Câu 4:

Có 3 bì thư giống nhau lần lượt được đánh số thứ tự từ 1 đến 3 và 3 con tem giống nhau lần lượt đánh số thứ tự từ 1 đến 3. Dán 3 con tem đó vào 3 bì thư sao cho không có bì thư nào không có tem. Tính xác suất để lấy ra được 2 bì thư trong 3 bì thư trên sao cho mỗi bì thư đều có số thứ tự giống với số thứ tự con tem đã dán vào nó

Xem lời giải »


Câu 5:

Cho tam giác ABC có đường cao AD, và trực tâm H. Gọi I, K lần lượt là trung điểm của HA, HB. Gọi E, F lần lượt là trung điểm của BC, AC. Chứng minh

a) Bốn điểm E, F, I, K cùng thuộc một đường tròn.

b) Điểm D cũng thuộc đường tròn đi qua bốn điểm E, F, I, K.

Xem lời giải »


Câu 6:

Cho tam giác ABC, N là điểm xác định bởi CN=12BC , G là trọng tâm tam giác ABC. Hệ thức tính  AC theo AG  và AN  là?

Xem lời giải »


Câu 7:

Cho tập hợp A={1;2;3;...;n} trong đó n là số nguyên dương lớn hơn 1. Hỏi có bao nhiêu cặp sắp thứ tự (x;y) thõa mãn: x và y thuộc A; x lớn hơn y?

Xem lời giải »


Câu 8:

Cho véc tơ a=1;2 . Với giá trị nào của thì véc tơ b=3;y tạo với véc tơ a một góc 45°.

Xem lời giải »