X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho tam giác ABC. I nằm trên BC cho 2CI = 3BI. J nằm trên đường thẳng BC cho 5JB = 2JC. G là


Câu hỏi:

Cho tam giác ABC. I nằm trên BC cho 2CI = 3BI. J nằm trên đường thẳng BC cho 5JB = 2JC. G là trọng tâm tam giác ABC.

a) Biểu diễn AB,AC  theo 2 vectơ AI,AJ  và biểu diễn  AJ qua AB,AC .

b)Tính AG  theo AI,AJ .

Trả lời:

Media VietJack

a) I là điểm trên cạnh BC mà: 2CI = 3BI. Suy ra: BICI=23

⇒ BICI+BI=23+2=25  ⇒ BIBC=25

⇒ BI=25BC  tương tự CI=35BC

J là điểm nằm trên BC kéo dài: 5JB = 2JC ⇒ JBJC=25

⇒ JBJCJB=252=23 ⇒ JBBC=23

⇒ JB=23BC và BC=33JC

AB=AI+IB=AI25BC=AI25.32JB=AI35JB=AI35JA+AB=AI+35AJ35AB

⇒ AB+35AB=AI+35AJ

⇒ AB=58AI+38AJ

AC=AI+IC=AI+35BC=AI+35.35.JC=AI+925JA+AC

⇒ AC925AC=AI+925JA

⇒ AC=2516AI916AJ

b) Lấy K là đối xứng của A qua H

Ta có: AK và BC cắt nhau tại trung điểm mỗi đường là H. Do đó ABKC là hình bình hành

Vì G là trọng tâm nên: AG=23AH=23.12.AB+AC   (sử dụng quy tắc hình bình hành vào hình bình hành ABKC, H là trung điểm của BC)

AG=13.AB+AC=13.58.AI+38AJ+2516AI916AJ=3548AI116AJ

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Giải phương trình: (x – 1)(x – 2)(x – 3)(x – 4) = 120.

Xem lời giải »


Câu 2:

Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Chứng minh rằng: BM+CN+AP=0 .

Xem lời giải »


Câu 3:

Cho ABC vuông tại A có AB < AC. Gọi D, E lần lượt là trung điểm của các cạnh BC và AC. Trên tia đối của tia DE lấy điểm F sao cho D là trung điểm của cạnh EF.

a) Chứng minh tứ giác BFCE là hình bình hành.

b) Chứng minh tứ giác BFEA là hình chữ nhật.

c) Gọi K là điểm đối xứng với F qua E. Chứng minh tứ giác AFCK là hình thoi.

d) Vẽ AH BC tại H. Gọi M là trung điểm của HC. Chứng minh FM AM.

Xem lời giải »


Câu 4:

Có 3 bì thư giống nhau lần lượt được đánh số thứ tự từ 1 đến 3 và 3 con tem giống nhau lần lượt đánh số thứ tự từ 1 đến 3. Dán 3 con tem đó vào 3 bì thư sao cho không có bì thư nào không có tem. Tính xác suất để lấy ra được 2 bì thư trong 3 bì thư trên sao cho mỗi bì thư đều có số thứ tự giống với số thứ tự con tem đã dán vào nó

Xem lời giải »


Câu 5:

Cho (O; R) và (O; R') tiếp xúc ngoài tại A. Kẻ dây cung AM của (O) và dây cung AN của (O') sao cho AM vuông góc với AN. Chứng minh:

a) OM song song O'N;

b) Xác định vị trí của AM và AN để diện tích tứ giác OMNO' lớn nhất.

Xem lời giải »


Câu 6:

Tìm góc α ∈ π6;π4;π3;π2  để phương trình cos2x + 3 sin2x – 2cosx = 0 tương đương với phương trình cos(2x – α) = cosx.

Xem lời giải »


Câu 7:

Tính diện tích hình thang vuông ABCD, biết  A^=B^ = 90°, AB = 3cm, AD = 4cm và BCD^  = 135°.

Xem lời giải »


Câu 8:

Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 9cm ; AC=12cm

a) Tính số đo góc B (làm tròn đến độ) và độ dài BH

b) Gọi E, F là hình chiếu của H trên AB, AC. Chứng minh AE.AB = AF.AC.

Xem lời giải »