Cho tứ diện ABCD, có AB = CD = 5, khoảng cách giữa AB và CD bằng 12, góc giữa hai đường thẳng AB và CD bằng 30°. Tính thể tích khối tứ diện ABCD.
Câu hỏi:
Cho tứ diện ABCD, có AB = CD = 5, khoảng cách giữa AB và CD bằng 12, góc giữa hai đường thẳng AB và CD bằng 30°. Tính thể tích khối tứ diện ABCD.
Trả lời:
Dựng hình lăng trụ AEF.BCD
Ta có:
Ta có: d(AB,CD) = d(AB, (CDFE)) = d(A, (CDFE))
⇒ d(A, (CDFE)) = 12
Lại có: CE = AB = CD = 5 và
Nên
Vậy .
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Tìm giao điểm 2 đường tròn (C1): x2 + y2 – 4 = 0 và (C2): x2 + y2 – 4x – 4y + 4 = 0.
Xem lời giải »
Câu 3:
Câu nào trong các câu sau không phải là mệnh đề?
Xem lời giải »
Câu 4:
Cho hình thang ABCD vuông góc tại A và B, có AD = 2a, AB = BC = a. Trên tia Ax vuông góc với mặt phẳng (ABCD) lấy một điểm S. Gọi C’, D’ lần lượt là hình chiếu vuông góc của A trên SC và SD. Chứng minh rằng .
Xem lời giải »