Cho tứ diện đều ABCD có độ dài các cạnh bằng 2a. Gọi M, N lần lượt là trung điểm các cạnh AC, BC; P là trọng tâm tam giác BCD. Mặt phẳng MNP cắt tứ diện theo một thiết diện có diện tích là:
Câu hỏi:
Cho tứ diện đều ABCD có độ dài các cạnh bằng 2a. Gọi M, N lần lượt là trung điểm các cạnh AC, BC; P là trọng tâm tam giác BCD. Mặt phẳng MNP cắt tứ diện theo một thiết diện có diện tích là:
B. ;
C. ;
D. .
Trả lời:
Đáp án đúng là C
Trong tam giác BCD có: P là trọng tâm, N là trung điểm BC
Suy ra N, P, D thẳng hàng
Vậy thiết diện là tam giác MND.
Xét tam giác MND, ta có
Do đó tam giác MND cân tại D
Gọi H là trung điểm MN suy ra DH ⊥ MN và
Xét tam giác DMH vuông tại H có MD2 = DH2 + MH2
Suy ra
Diện tích tam giác SMD là
Vậy ta chọn đáp án C.
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Xác định số hữu tỉ a sao cho x3 + ax2 + 5x + 3 chia hết cho x2 + 2x + 3.
Xem lời giải »
Câu 2:
Xét sự biến thiên của hàm số y = tan2x trên một chu kì tuần hoàn. Trong các kết luận sau, kết luận nào đúng?
A. Hàm số đã cho đồng biến trên khoảng và .
B. Hàm số đã cho đồng biến trên khoảng và nghịch biến trên khoảng
C. Hàm số đã cho luôn đồng biến trên khoảng .
D. Hàm số đã cho nghịch biến trên khoảng và đồng biến trên khoảng
Xem lời giải »
Câu 3:
Tìm x thỏa mãn phương trình
A. x = 2;
B. x = 4;
C. x = 1;
D. x = 3.
Xem lời giải »
Câu 5:
Cho hình chóp S.ABCD có đáy là hình vuông, SA vuông góc với đáy. Hình chóp có bao nhiêu mặt bên là tam giác vuông?
Xem lời giải »
Câu 6:
Với a, b, c là các số dương. Chứng minh rằng:
Xem lời giải »