X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho ( x + căn bậc hai của x^2 + 2005)( y + căn bậc hai của y^2 + căn bậc hia của 2005) = căn bậc hai của 2005). Tính x + y.


Câu hỏi:

Cho \(\left( {x + \sqrt {{x^2} + 2005} } \right)\left( {y + \sqrt {{y^2} + \sqrt {2005} } } \right) = \sqrt {2005} \). Tính x + y.

Trả lời:

Lời giải

Ta có: \(\left( {x + \sqrt {{x^2} + \sqrt {2005} } } \right)\left( {\sqrt {{x^2} + \sqrt {2005} } - x} \right) = {x^2} + \sqrt {2005} - {x^2} = \sqrt {2005} \)

Mà theo bài cho ta có:

\(\left( {x + \sqrt {{x^2} + 2005} } \right)\left( {y + \sqrt {{y^2} + \sqrt {2005} } } \right) = \sqrt {2005} \)

\( \Leftrightarrow \left( {x + \sqrt {{x^2} + 2005} } \right)\left( {y + \sqrt {{y^2} + \sqrt {2005} } } \right) = \left( {x + \sqrt {{x^2} + \sqrt {2005} } } \right)\left( {\sqrt {{x^2} + \sqrt {2005} } - x} \right)\)

\( \Leftrightarrow y + \sqrt {{y^2} + \sqrt {2005} } = \sqrt {{x^2} + 2005} - x\) (1)

Chứng minh tương tự ta có: \(x + \sqrt {{x^2} + 2005} = \sqrt {{y^2} + \sqrt {2005} } - y\) (2)

Cộng từng vế của (1) và (2), ta có:

\(x + \sqrt {{x^2} + \sqrt {2005} } + y + \sqrt {{y^2} + \sqrt {2005} } = \sqrt {{x^2} + \sqrt {2005} } - x + \sqrt {{y^2} + \sqrt {2005} } - y\)

\( \Leftrightarrow x + y = - x - y\)

\( \Leftrightarrow x + y = 0\).

Vậy x + y = 0.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Tìm x, biết: \({x^2} + 5x + 4 - 5\sqrt {{x^2} + 5x + 28} = 0\).

Xem lời giải »


Câu 2:

Cho định lí “Cho số tự nhiên n, nếu n5 chia hết cho 5 thì n chia hết cho 5”.

Định lí này được viết dưới dạng P Þ Q. Hãy phát biểu định lí đảo của định lí trên rồi dùng các thuật ngữ “điều kiện cần và đủ” phát biểu gộp cả 2 định lí thuận và đảo.

Xem lời giải »


Câu 3:

Viết các số (0,25)8 và (0,125)4 dưới dạng các lũy thừa với cơ số 0,5.

Xem lời giải »


Câu 4:

Cho một hộp đựng 4 viên bi đỏ, 5 viên bi xanh và 7 viên bi vàng. Lấy ngẫu nhiên một lần ba viên bi. Tính xác suất để trong ba viên bi lấy được chỉ có hai màu.

Xem lời giải »


Câu 5:

Chứng minh: \(cot{\rm{ }}a--cot{\rm{ }}b{\rm{ }} = \frac{1}{{\tan a}} - \frac{1}{{\tan b}}\).

Xem lời giải »


Câu 6:

Tìm tất cả các giá trị của tham số m để đồ thị hàm số \(y = \frac{{x + 1}}{{\sqrt {{m^2}{x^2} + m - 1} }}\) có bốn đường tiệm cận.

Xem lời giải »