X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Cho x, y, z ≥ 0 thỏa mãn x + y + z = 3. Tìm giá trị nhỏ nhất và giá trị lớn nhất của S = x^2 + y^2 + z^2 + 9.2xyz


Câu hỏi:

Cho x, y, z ≥ 0 thỏa mãn x + y + z = 3. Tìm giá trị nhỏ nhất và giá trị lớn nhất của S=x2+y2+z2+92xyz.

Trả lời:

Ta có: Sx2+y2+z2+6xyz

Ta chứng minh x2 + y2 + z2 + 6xyz ≤ 9 = (x + y + z)2

3(x2 + y2 + z2 + 6xyz) ≤ 3(x + y + z)2

(x + y + z)(x2 + y2 + z2 + 6xyz) ≤ (x + y + z)3

(x + y + z)(x2 + y2 + z2) + 18xyz ≤ (x + y + z)3

x3 + xy2 +xz2 + yx2 + y3 + yz2 + zx2 + zy2 + z3 + 18xyz ≤ x3 + y3 + z3 + 3x2y + 3x2z + 3xy2 + 3xz2 + 3y2z + 3yz2 + 6xyz

12xyz ≤ 2x2y + 2x2z + 2xy2 + 2xz2 + 2y2z + 2yz2

2(xy2 + xz2 + yz2 + yx2 + zy2 + zx2) – 12xyz ≥ 0

2(xy2 + xz2 + yz2 + yx2 + zy2 + zx2 – 6xyz) ≥ 0

2(xy2 – 2xyz + xz2 + yz2 – 2xyz + yx2 + zy2 – 2xyz + zx2) ≥ 0

2[x(y2 – 2yz + z2) + y(z2 – 2xz + x2) + z(y2 – 2xy + x2)] ≥ 0

2[x(y – z)2 + y(z – x)2 + z(y – x)2] ≥ 0

Vì x, y, z ≥ 0

Nên x(y – z)2 ≥ 0, y(z – x)2 ≥ 0, z(y – x)2 ≥ 0

Suy ra 2[x(y – z)2 + y(z – x)2 + z(y – x)2] ≥ 0

Do đó x2 + y2 + z2 + 6xyz ≤ 9

Hay S ≤ 9

Dấu “ = ” xảy ra khi (x; y; z) = (0; 0; 3) và các hoán vị

Ta có Sx2+y2+z2+32xyz

Ta sẽ chứng minh x2+y2+z2+32xyz92=x+y+z22

2x2 + 2y2 + 2z2 + 3xyz ≥ (x + y + z)2

2x2 + 2y2 + 2z2 + 3xyz ≥ x2 + y2 + z2 + 2xy + 2yz + 2xz

x2 + y2 + z2 + 3xyz ≥ 2(xy + yz + xz)

3(x2 + y2 + z2) + 9xyz ≥ 3 . 2(xy + yz + xz)

(x + y + z)(x2 + y2 + z2) + 9xyz ≥ 2(xy + yz + xz)(x + y + z)

x3 + xy2 +xz2 + yx2 + y3 + yz2 + zx2 + zy2 + z3 + 9xyz ≥ 2x2y + 2xy2 + 2xyz + 2xyz + 2y2z + 2yz2 + 2x2z + 2xyz + 2xz2

x3 + y3 + z3 + 3xyz ≥ x2y + xy2 + y2z + yz2 + x2z + xz2

x3 + y3 + z3 + 3xyz ≥ (x2y + xy2) + (y2z + yz2) + (x2z + xz2)

x3 + y3 + z3 + 3xyz ≥ xy(x + y) + yz(y + z) + xz(x + z) (luôn đúng theo bất đẳng thức Schur)

Do đó x2+y2+z2+32xyz92

Hay S92

Dấu “ = ” xảy ra khi x;y;z=0;32;32 và các hoán vị

Vậy giá trị lớn nhất của S là 9 và giá trị nhỏ nhất là 92.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Cho biểu thức A=xx1xxxx+1x+x:xx11x+1.

a) Rút gọn A.

Xem lời giải »


Câu 2:

b) Tìm giá trị nguyên của x để A đạt giá trị nguyên.

Xem lời giải »


Câu 3:

Tính giá trị của biểu thức: a) 182 – (96 – 54)

Xem lời giải »


Câu 4:

Tính giá trị của biểu thức: b) 7 × (48 : 6).

Xem lời giải »


Câu 5:

Cho tam giác ABC vuông tại A, AB = 3 và AC = 4. Gọi I là tâm đường tròn nội tiếp của tam giác ABC. Chứng minh 5IA+4IB+3IC=0

Xem lời giải »


Câu 6:

Có một bình đựng đầy 8 lít rượu và hai bình rỗng gồm 5 lít và 3 lít. Làm thế nào để lấy được 4 lít rượu bán cho khách?

Xem lời giải »


Câu 7:

Cạnh của một thửa ruộng hình vuông gấp 2 lần cạnh của một vườn rau hình vuông. Hỏi diện tích thửa ruộng gấp mấy lần diện tích vườn rau ?

Xem lời giải »


Câu 8:

Cứ xay 1 tạ thóc thì được 67,5 kg gạo. Xay lần thứ nhất 165,5 kg thóc, lần thứ hai 134,5 kg thóc. Hỏi cả hai lần xay được bao nhiêu kg gạo?

Xem lời giải »