X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Chứng minh: 52n+1.2n+2 + 3n+2.22n+1 chia hết cho 38.


Câu hỏi:

Chứng minh: 52n+1.2n+2 + 3n+2.22n+1 chia hết cho 38.

Trả lời:

52n+1.2n+2 + 3n+2.22n+1 = 52n.5.2n.22+3n.32.22n.2

= 252n.2n.5.4 + 3n.4n.9.2

= 50n.20 + 12n.18

50 đồng dư với 12 (mod 38)

Do đó, 50n đồng dư với 12n (mod 38)

Do đó, 50n.20 + 12n.18 đồng dư với 12n.20 + 12n.18 = 12n.38 đồng dư với 0 (mod 38)

Vậy 52n+1.2n+2 + 3n+2.22n+1 chia hết cho 38.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Chứng minh rằng mọi số tự nhiên có 3 chữ số giống nhau đều chia hết cho 37.

Xem lời giải »


Câu 2:

Có bao nhiêu số lẻ có 3 chữ số mà các chữ số khác nhau ?

Xem lời giải »


Câu 3:

Có bao nhiêu số có 2 chữ số đều chia hết cho cả 2 và 3.

Xem lời giải »


Câu 4:

Có bao nhiêu số lẻ có 3 chữ số mà các chữ số khác nhau ?

Xem lời giải »


Câu 5:

Có bao nhiêu số nguyên là tổng của ba phần tử phân biệt của tập hợp {1; 4; 7; 10; 13; 16; 19}.

Xem lời giải »