X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Chứng minh rằng A > 2016 biết A = 457/1+456/2+455/3+ 1/457


Câu hỏi:

Chứng minh rằng A > 2016 biết A = 4571+4562+4553+...+1457 .

Trả lời:

A = 4571+4562+4553+...+1457

A=4562+1+4553+1+...+1457+1+1

A=458+4582+...+458456+458457+458458

A = 4581+12+...+1457+1458

Xét 1+12+...+1457+1458, ta có:

12=12

13+14>14+14=12

15+16+..+18>18+18+..+18=12

….

1257+1258+..+1458>1458+1458+..+1458=202458

Vậy: 1+12+...+1457+1458>12+12+12+12+12+12+12+12+202458=4+202458=2034458

Vậy A > 458.2034458=2034>2016   hay A > 2016.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Giải phương trình: (x – 1)(x – 2)(x – 3)(x – 4) = 120.

Xem lời giải »


Câu 2:

Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của BC, CA, AB. Chứng minh rằng: BM+CN+AP=0 .

Xem lời giải »


Câu 3:

Cho ABC vuông tại A có AB < AC. Gọi D, E lần lượt là trung điểm của các cạnh BC và AC. Trên tia đối của tia DE lấy điểm F sao cho D là trung điểm của cạnh EF.

a) Chứng minh tứ giác BFCE là hình bình hành.

b) Chứng minh tứ giác BFEA là hình chữ nhật.

c) Gọi K là điểm đối xứng với F qua E. Chứng minh tứ giác AFCK là hình thoi.

d) Vẽ AH BC tại H. Gọi M là trung điểm của HC. Chứng minh FM AM.

Xem lời giải »


Câu 4:

Có 3 bì thư giống nhau lần lượt được đánh số thứ tự từ 1 đến 3 và 3 con tem giống nhau lần lượt đánh số thứ tự từ 1 đến 3. Dán 3 con tem đó vào 3 bì thư sao cho không có bì thư nào không có tem. Tính xác suất để lấy ra được 2 bì thư trong 3 bì thư trên sao cho mỗi bì thư đều có số thứ tự giống với số thứ tự con tem đã dán vào nó

Xem lời giải »


Câu 5:

Tại cửa hàng giá niêm yết một cái áo là 300000 đồng. Nếu bán với giá bằng ba phần tư giá niêm yết thì được lãi 20%. Hỏi để lãi 40% thì cửa hàng bán giấ niêm yết là bao nhiêu?

Xem lời giải »


Câu 6:

Cho tam giác ABC nhọn, các đường cao AD,BE,CF cắt nhau tại H.

a) Chứng minh: Tam giác ABE và tam giác AFC đồng dạng, AF. AB = AE . AC.

b) Chứng minh AEF^  = ABC^ .

c) Cho AE = 3cm, AB = 6cm. Chứng minh: SABC = 4SAEF.

Xem lời giải »


Câu 7:

Cho tam giác ABC vuông tại A (AB<AC). Gọi D, E lần lượt là trung điểm của BC, AC. Trên tia đối của tia DE lấy điểm F sao cho D là trung điểm của EF. Vẽ AH vuông góc với BC (H thuộc BC). trên đoạn thẳng HC lấy điểm M sao cho HM = MC. Chứng minh AM vuông góc với FM.

Xem lời giải »


Câu 8:

Tìm GTLN của x1x

Xem lời giải »