X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y = x^2 – 2(m + 1)x – 3 đồng biến trên khoảng (4; 2018)?


Câu hỏi:

Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y = x2 – 2(m + 1)x – 3 đồng biến trên khoảng (4; 2018)?

Trả lời:

Lời giải

Hàm số đã cho có a = 1 > 0 và \(\frac{{ - b}}{{2a}} = m + 1\) nên hàm số đã cho đồng biến trên khoảng (m + 1; +∞).

Do đó để hàm số đã cho đồng biến trên khoảng (4; 2018) thì (4; 2018) (m + 1; +∞).

m + 1 ≤ 4 m ≤ 3.

Mà m là số nguyên dương.

Suy ra m {1; 2; 3}.

Vậy có 3 giá trị nguyên dương của tham số m thỏa mãn yêu cầu bài toán.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Biết rằng \(\mathop {\lim }\limits_{x \to 0} \frac{{\sin x}}{x} = 1\). Tìm giá trị thực của tham số m để hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\frac{{1 + \cos x}}{{{{\left( {x - \pi } \right)}^2}}},\,\,\,\,\,\,x \ne \pi \\m,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = \pi \end{array} \right.\) liên tục tại x = π.

Xem lời giải »


Câu 2:

Có bao nhiêu số tự nhiên nhỏ hơn 100 chia hết cho 2 và 3.

Xem lời giải »


Câu 3:

Chứng minh rằng với mọi góc α (0° ≤ α ≤ 180°), ta đều có sin2α + cos2α = 1.

Xem lời giải »


Câu 4:

So le ngoài là như thế nào? Lấy ví dụ.

Xem lời giải »