X

1000 bài tập trắc nghiệm ôn tập môn Toán có đáp án

Có bao nhiêu số tự nhiên chia hết cho 4 thoả mãn số đó nhỏ hơn 31,72 và lớn hơn 3,73


Câu hỏi:

Có bao nhiêu số tự nhiên chia hết cho 4 thoả mãn số đó nhỏ hơn 31,72 và lớn hơn 3,73 ?

Trả lời:

Gọi số cần tìm là x

Ta có: 3,73 < x < 31,72

Suy ra: x {4; 8; 12; 16; 20; 24; 28}

Vậy có 7 số tự nhiên thỏa mãn.

Xem thêm bài tập Toán có lời giải hay khác:

Câu 1:

Tìm tất cả giá trị của tham số m để hàm số y = mx2 – (m + 6)x nghịch biến trên khoảng (–1; +∞).

Xem lời giải »


Câu 2:

Tính bằng cách thuận tiện: \(\frac{1}{4}:0,25 - \frac{1}{8}:0,125 + \frac{1}{2}:0,5 - \frac{1}{{10}}\).

Xem lời giải »


Câu 3:

Xe thứ nhất chở được 25 tấn hàng, xe thứ hai chở 35 tấn hàng, xe thứ ba chở bằng trung bình cộng 3 xe. Hỏi xe thứ 3 chở bao nhiêu tấn hàng?

Xem lời giải »


Câu 4:

A = {1; 2; 3; …; 16}. Bốc ngẫu nhiên 3 phần tử trong A. Tính xác suất để để tổng 3 số bốc ra chia hết cho 3.

Xem lời giải »


Câu 5:

Có 3 học sinh nữ và 2 học sinh nam. Ta muốn sắp xếp vào 1 bàn dài có 5 ghế ngồi. Hỏi có bao nhiêu cách xếp cho 3 học sinh nữ ngồi kề nhau?

Xem lời giải »


Câu 6:

Hình thang ABCD (AB//CD) có DC = 2AB. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA.

a) Chứng minh các tứ giác ABPD, MNPQ là hình bình hành.

b) Tìm điều kiện của hình thang ABCD để MNPQ là hình thoi.

c) Gọi E là giao điểm của BD và AP. Chứng minh Q, N, E thẳng hàng.

Xem lời giải »


Câu 7:

Học sinh khối 5 của một trường tiểu học sinh hoạt động ngoài trời: Nếu chia thành các tổ, mỗi tổ 6 học sinh nam và 6 học sinh nữ thì còn thùa 20 học sinh nam. Nếu chia thành các tổ, mỗi tổ 7 học sinh nam và 5 học sinh nữ thì còn thừa 20 học sinh nữ. Hỏi khối 5 trường tiểu học đó có bao nhiêu học sinh nam ?

Xem lời giải »


Câu 8:

Cho \(M = \frac{{2018}}{{2019}} + \frac{{2019}}{{2020}} + \frac{{2020}}{{2021}} + \frac{{2021}}{{2018}}\); \(N = \frac{1}{8} + \frac{1}{9} + \frac{1}{{10}} + ... + \frac{1}{{62}} + \frac{1}{{63}}\). So sánh M và N?

Xem lời giải »