Một công ty Y cần thuê xe để chở 140 người và 9 tấn hàng. Nơi thuê xe có 2 loại xe, trong đó có 10 xe loại A và 9 xe loại B. Một chiếc xe loại A cho thuê với giá 4 triệu, một chiếc xe loại B
Câu hỏi:
Một công ty Y cần thuê xe để chở 140 người và 9 tấn hàng. Nơi thuê xe có 2 loại xe, trong đó có 10 xe loại A và 9 xe loại B. Một chiếc xe loại A cho thuê với giá 4 triệu, một chiếc xe loại B cho thuê với giá 3 triệu. Biết rằng mỗi xe loại A có thể chở 20 người và 0,6 tấn hàng; mỗi xe loại B có thể chở tối đa 10 người và 1,5 tấn. Công ty Y cần thuê bao nhiêu xe mỗi loại để chi phí bỏ ra ít nhất?
Trả lời:
Gọi x và y lần lượt là số loại xe A và B cần thuê. Khi đó số tiền cần bỏ ra để thuê xe là f(x; y) = 4x + 3y (triệu).
Ta có x xe loại A sẽ chở được 20x người và 0,3x tấn hàng; y xe loại B sẽ chở được 10y người và 1,5y tấn hàng.
Ta có hệ bất phương trình sau
⇔ (*)
Bài toán trở thành tìm giá trị nhỏ nhất của hàm số f(x; y) trên miền nghiệm của hệ (*). Miền nghiệm của hệ (*) là tứ giác ABCD (kể cả biên).
Hàm số f(x; y) = 4x + 3y sẽ đạt giá trị nhỏ nhất trên miền nghiệm của hệ bất phương trình (*) khi (x; y) là tọa độ của một trong các đỉnh A(5; 4), B(10; 2), C(10; 9),
Ta có: f(5; 4) = 32, f(10; 2) = 46, f(10; 9) = 67,
Suy ra f(x; y) nhỏ nhất khi (x; y) = (5; 4). Như vậy để chi phí vận chuyển thấp nhất cần thuê 5 xe loại A và 4 xe loại B.