Một hộp đựng 7 viên bi xanh, 5 viên bi đỏ và 4 viên bi vàng. Có bao nhiêu cách lấy ra 8 viên bi có đủ 3 màu? A. 12 201; B. 10 224; C. 12 422; D. 14 204.
Câu hỏi:
Một hộp đựng 7 viên bi xanh, 5 viên bi đỏ và 4 viên bi vàng. Có bao nhiêu cách lấy ra 8 viên bi có đủ 3 màu?
A. 12 201;
B. 10 224;
C. 12 422;
D. 14 204.
Trả lời:
Lời giải
Đáp án đúng là: A
Số cách lấy ra 8 viên bi bất kì: \(C_{16}^8 = 12\,\,870\)
Số cách lấy ra 8 viên bi không có màu vàng mà chỉ có hai màu xanh và đỏ: \(C_7^7C_5^1 + C_7^6C_5^2 + C_7^5C_5^3 + C_7^4C_5^4 + C_7^3C_5^5 = 495\)
Số cách lấy ra 8 viên bi không có màu đỏ mà có hai màu xanh và vàng:
\(C_7^7C_4^1 + C_7^6C_4^2 + C_7^5C_4^3 + C_7^4C_4^4 = 165\)
Số cách lấy ra 8 viên bi không có màu xanh mà chỉ có hai màu đỏ và vàng:
\(C_5^5C_4^3 + C_5^4C_4^4 = 9\)
Số cách lấy ra 8 viên bi có đủ 3 màu:
12 870 − (495 + 165 + 9) = 12 201 (cách).
Xem thêm bài tập Toán có lời giải hay khác:
Câu 1:
Tìm x, biết: \({x^2} + 5x + 4 - 5\sqrt {{x^2} + 5x + 28} = 0\).
Xem lời giải »
Câu 2:
Cho định lí “Cho số tự nhiên n, nếu n5 chia hết cho 5 thì n chia hết cho 5”.
Định lí này được viết dưới dạng P Þ Q. Hãy phát biểu định lí đảo của định lí trên rồi dùng các thuật ngữ “điều kiện cần và đủ” phát biểu gộp cả 2 định lí thuận và đảo.
Xem lời giải »
Câu 3:
Viết các số (0,25)8 và (0,125)4 dưới dạng các lũy thừa với cơ số 0,5.
Xem lời giải »
Câu 4:
Cho một hộp đựng 4 viên bi đỏ, 5 viên bi xanh và 7 viên bi vàng. Lấy ngẫu nhiên một lần ba viên bi. Tính xác suất để trong ba viên bi lấy được chỉ có hai màu.
Xem lời giải »
Câu 6:
Tìm nghiệm nguyên của phương trình: y2 = x(x + 1)(x + 7)(x + 8).
Xem lời giải »
Câu 7:
Đố bạn chỉ với 12 que diêm (hay 12 chiếc que có độ dài bằng nhau) mà xếp được thành 6 tam giác đều.
Xem lời giải »
Câu 8:
Cho n là số tự nhiên. Chứng minh: 52n+1 + 2n+4 +2n+1 chia hết cho 23.
Xem lời giải »